Puedes usar ML Kit para reconocer y decodificar códigos de barras.
Antes de comenzar
- Si aún no lo has hecho, agrega Firebase a tu proyecto de Android.
- Agrega las dependencias para las bibliotecas de Android del Kit de AA al archivo Gradle (generalmente
app/build.gradle
) de tu módulo (nivel de app):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1' }
Lineamientos para imágenes de entrada
-
Para que el Kit de AA reconozca códigos de barras con exactitud, las imágenes de entrada deben contener códigos de barras representados con datos de píxeles suficientes.
Los requisitos específicos de datos de píxeles dependen del tipo de código de barras y de la cantidad de datos codificados en él (ya que la mayoría de los códigos de barras admiten una carga útil de longitud variable). Por lo general, la unidad mínima de significado de un código de barras debe tener al menos 2 píxeles de ancho (y en códigos de 2 dimensiones, también 2 píxeles de altura).
Por ejemplo, los códigos de barras EAN-13 contienen barras y espacios con 1, 2, 3 o 4 unidades de ancho, por lo que una imagen de código de barras EAN-13 tiene, idealmente, barras y espacios de al menos 2, 4, 6 y 8 píxeles de ancho. Debido a que un código de barras EAN-13 tiene un ancho de 95 unidades en total, el código de barras deberá tener al menos 190 píxeles de ancho.
Los formatos más densos, como PDF417, requieren mayores dimensiones de píxeles para que el Kit de AA pueda leerlas de forma confiable. Por ejemplo, un código PDF417 puede tener hasta 34 “palabras” de 17 unidades de ancho en una sola fila, que idealmente tendrá un ancho de 1156 píxeles.
-
Un enfoque de imagen deficiente puede afectar la exactitud del escaneo. Si no obtienes resultados aceptables, intenta pedirle al usuario que vuelva a capturar la imagen.
-
Para aplicaciones típicas, se recomienda proporcionar una imagen de mayor resolución (como 1280 x 720 o 1920 x 1080), lo que hace que los códigos de barras sean detectables a mayor distancia de la cámara.
Sin embargo, en aplicaciones en las que la latencia es fundamental, puedes mejorar el rendimiento si capturas imágenes con una resolución más baja, en las que el código de barras constituya la mayor parte de la imagen de entrada. Consulta también Sugerencias para mejorar el rendimiento en tiempo real.
1. Configura el detector de códigos de barras
Si sabes qué formatos de códigos de barras leerás, puedes configurar el detector de códigos de barras para que solo detecte esos formatos a fin de aumentar su velocidad.Por ejemplo, para detectar solo códigos QR y Aztec, crea un objeto
FirebaseVisionBarcodeDetectorOptions
como el del siguiente ejemplo:
Java
FirebaseVisionBarcodeDetectorOptions options = new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build();
Kotlin
val options = FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build()
Se admiten los siguientes formatos:
- Code 128 (
FORMAT_CODE_128
) - Code 39 (
FORMAT_CODE_39
) - Code 93 (
FORMAT_CODE_93
) - Codabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - Código QR (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Aztec (
FORMAT_AZTEC
) - Data Matrix (
FORMAT_DATA_MATRIX
)
2. Ejecuta el detector códigos de barras
Para reconocer códigos de barras en una imagen, crea un objetoFirebaseVisionImage
a partir de un Bitmap
, media.Image
, ByteBuffer
, un arreglo de bytes o un archivo ubicado en el dispositivo. Luego, pasa el objeto FirebaseVisionImage
al método detectInImage
de FirebaseVisionBarcodeDetector
.
Crea un objeto
FirebaseVisionImage
a partir de tu imagen.-
Para crear un objeto
FirebaseVisionImage
a partir de un objetomedia.Image
, como cuando se captura una imagen con la cámara de un dispositivo, pasa el objetomedia.Image
y la rotación de la imagen aFirebaseVisionImage.fromMediaImage()
.Si usas la biblioteca CameraX, las clases
OnImageCapturedListener
yImageAnalysis.Analyzer
calculan el valor de rotación por ti, así que solo tienes que convertir la rotación en una de las constantesROTATION_
de ML Kit antes de llamar aFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Si no usas una biblioteca de cámaras que te proporcione la rotación de la imagen, puedes calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Luego, pasa el objeto
media.Image
y el valor de rotación aFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Para crear un objeto
FirebaseVisionImage
a partir de un URI de archivo, pasa el contexto de la app y el URI de archivo aFirebaseVisionImage.fromFilePath()
. Esto es útil cuando usas un intentACTION_GET_CONTENT
para solicitarle al usuario que seleccione una imagen de su app de galería.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Para crear un objeto
FirebaseVisionImage
a partir de unByteBuffer
o un array de bytes, primero calcula la rotación de la imagen como se describió anteriormente para la entradamedia.Image
.Luego, crea un objeto
FirebaseVisionImageMetadata
que contenga la altura, el ancho, el formato de codificación de color y la rotación de la imagen:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Usa el búfer o array, y el objeto de metadatos, para crear un objeto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Para crear un objeto
FirebaseVisionImage
a partir de un objetoBitmap
, haz lo siguiente:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
debe estar en posición vertical, sin que sea necesario rotarla.
-
Obtén una instancia de
FirebaseVisionBarcodeDetector
:Java
FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(); // Or, to specify the formats to recognize: // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options);
Kotlin
val detector = FirebaseVision.getInstance() .visionBarcodeDetector // Or, to specify the formats to recognize: // val detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options)
Por último, pasa la imagen al método
detectInImage
:Java
Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
3. Obtén información de códigos de barras
Si la operación de reconocimiento del código de barras se ejecuta de forma correcta, se pasará una lista de objetosFirebaseVisionBarcode
al objeto de escucha que detecta el resultado correcto. Cada objeto FirebaseVisionBarcode
representa un código de barras que se detectó en la imagen. Para cada código de barras, puedes obtener las coordenadas de sus límites en la imagen de entrada, junto con los datos sin procesar codificados en el código de barras. Además, si el detector de códigos de barras pudo determinar el tipo de datos codificados en el código de barras, puedes obtener un objeto que contenga los datos analizados.
Por ejemplo:
Java
for (FirebaseVisionBarcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case FirebaseVisionBarcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case FirebaseVisionBarcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { FirebaseVisionBarcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } FirebaseVisionBarcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Sugerencias para mejorar el rendimiento en tiempo real
Si quieres escanear códigos de barras en una aplicación en tiempo real, sigue estos lineamientos para lograr la mejor velocidad de fotogramas por segundo:
-
No captures imágenes de entrada con la resolución nativa de la cámara. En algunos dispositivos, la captura en resolución nativa produce imágenes extremadamente grandes (más de 10 megapíxeles), lo que da como resultado una latencia muy pobre y una exactitud baja. En lugar de eso, solicita a la cámara el tamaño requerido para la detección de códigos de barras: por lo general, no más de 2 megapíxeles.
Si la velocidad de escaneo es importante, puedes reducir aún más la resolución de captura de imagen. Sin embargo, ten en cuenta los requisitos mínimos de tamaño de códigos de barras descritos anteriormente.
- Regula las llamadas al detector. Si hay un fotograma de video nuevo disponible mientras se ejecuta el detector, ignora ese fotograma.
- Si estás usando la salida del detector para superponer gráficos en la imagen de entrada, primero obtén el resultado de la detección de ML Kit y, luego, procesa la imagen y la superposición en un solo paso. De esta manera procesas la superficie de visualización solo una vez por cada fotograma de entrada.
-
Si usas la API de Camera2, captura imágenes en formato
ImageFormat.YUV_420_888
.Si usas la API de Camera más antigua, captura imágenes en formato
ImageFormat.NV21
.