אתם יכולים להשתמש ב-ML Kit כדי לזהות ולפענח קודי מ barras.
לפני שמתחילים
- אם עדיין לא עשיתם זאת, מוסיפים את Firebase לפרויקט Android.
- מוסיפים את יחסי התלות של ספריות ML Kit ל-Android לקובץ Gradle של המודול (ברמת האפליקציה) (בדרך כלל
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1' }
הנחיות לתמונות קלט
-
כדי ש-ML Kit יוכל לקרוא ברקודים בצורה מדויקת, תמונות הקלט חייבות להכיל ברקודים שמיוצגים על ידי מספיק נתוני פיקסלים.
הדרישות הספציפיות לנתוני הפיקסלים תלויות גם בסוג הברקוד וגם בכמות הנתונים שמקודדים בו (כי רוב הברקודים תומכים בתוכן טעון באורך משתנה). באופן כללי, היחידה הקטנה ביותר של הברקוד שמשמעותית צריכה להיות ברוחב של לפחות 2 פיקסלים (ובקודים דו-ממדיים, בגובה של 2 פיקסלים).
לדוגמה, קודי EAN-13 מורכבים מפסים ומרווחים ברוחב של יחידה אחת, שתיים, שלוש או ארבע. לכן, רצוי שתמונה של קוד EAN-13 תכלול פסים מרווחים ברוחב של לפחות 2, 4, 6 ו-8 פיקסלים. מכיוון שקוד הברקוד EAN-13 הוא ברוחב של 95 יחידות בסך הכול, רוחב הקוד צריך להיות לפחות 190 פיקסלים.
בפורמטים צפופים יותר, כמו PDF417, צריך מידות פיקסלים גדולות יותר כדי ש-ML Kit יוכל לקרוא אותם בצורה מהימנה. לדוגמה, קוד PDF417 יכול לכלול עד 34 "מילים" ברוחב 17 יחידות בשורה אחת, שרוחב הרצוי שלה הוא לפחות 1,156 פיקסלים.
-
אם התמונה לא ממוקדת, יכול להיות שהסריקה תהיה פחות מדויקת. אם התוצאות לא מתקבלות, נסו לבקש מהמשתמש לצלם מחדש את התמונה.
-
באפליקציות רגילות, מומלץ לספק תמונה ברזולוציה גבוהה יותר (כמו 1280x720 או 1920x1080), כדי שאפשר יהיה לזהות את הקודים המוטבעים ממרחק גדול יותר מהמצלמה.
עם זאת, באפליקציות שבהן זמן האחזור קריטי, אפשר לשפר את הביצועים על ידי צילום תמונות ברזולוציה נמוכה יותר, אבל תוך דרישת שהברקוד יהווה את רוב התמונה. מומלץ לקרוא גם את המאמר טיפים לשיפור הביצועים בזמן אמת.
1. הגדרת הגלאי של ברקודים
אם אתם יודעים אילו פורמטים של קודי מ barras אתם צפויים לקרוא, תוכלו לשפר את המהירות של גלאי קודי המ barras על ידי הגדרה שלו לזיהוי הפורמטים האלה בלבד.לדוגמה, כדי לזהות רק קודי Aztec וקודי QR, יוצרים אובייקט FirebaseVisionBarcodeDetectorOptions
כמו בדוגמה הבאה:
Java
FirebaseVisionBarcodeDetectorOptions options = new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build();
Kotlin
val options = FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build()
הפורמטים הבאים נתמכים:
- Code 128 (
FORMAT_CODE_128
) - Code 39 (
FORMAT_CODE_39
) - קוד 93 (
FORMAT_CODE_93
) - Codabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - קוד QR (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Aztec (
FORMAT_AZTEC
) - Data Matrix (
FORMAT_DATA_MATRIX
)
2. הרצת הגלאי לזיהוי ברקודים
כדי לזהות קודי מ barras בתמונה, יוצרים אובייקטFirebaseVisionImage
מ-Bitmap
, מ-media.Image
, מ-ByteBuffer
, ממערך בייטים או מקובץ במכשיר. לאחר מכן מעבירים את האובייקט FirebaseVisionImage
לשיטה detectInImage
של FirebaseVisionBarcodeDetector
.
יוצרים אובייקט
FirebaseVisionImage
מהתמונה.-
כדי ליצור אובייקט
FirebaseVisionImage
מאובייקטmedia.Image
, למשל כשיוצרים תמונה ממצלמת המכשיר, מעבירים את האובייקטmedia.Image
ואת סיבוב התמונה אלFirebaseVisionImage.fromMediaImage()
.אם אתם משתמשים בספרייה CameraX, הערך של הזווית מסתובב בעצמו על ידי הכיתות
OnImageCapturedListener
ו-ImageAnalysis.Analyzer
, כך שצריך רק להמיר את הזווית לאחד מהקבועיםROTATION_
של ML Kit לפני שמפעילים אתFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
אם אתם לא משתמשים בספריית מצלמה שמספקת את כיוון התמונה, תוכלו לחשב אותו לפי כיוון המכשיר וכיוון החיישן של המצלמה במכשיר:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
לאחר מכן מעבירים את האובייקט
media.Image
ואת ערך הסיבוב אלFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- כדי ליצור אובייקט
FirebaseVisionImage
מכתובת URI של קובץ, מעבירים את הקשר של האפליקציה ואת כתובת ה-URI של הקובץ אלFirebaseVisionImage.fromFilePath()
. האפשרות הזו שימושית כשמשתמשים בכוונהACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- כדי ליצור אובייקט
FirebaseVisionImage
מ-ByteBuffer
או ממערך בייטים, קודם מחשבים את סיבוב התמונה כפי שמתואר למעלה עבור קלטmedia.Image
.לאחר מכן יוצרים אובייקט
FirebaseVisionImageMetadata
שמכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
משתמשים במאגר או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- כדי ליצור אובייקט
FirebaseVisionImage
מאובייקטBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
חייבת להיות זקופה, ללא צורך בסיבוב נוסף.
-
אחזור מופע של
FirebaseVisionBarcodeDetector
:Java
FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(); // Or, to specify the formats to recognize: // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options);
Kotlin
val detector = FirebaseVision.getInstance() .visionBarcodeDetector // Or, to specify the formats to recognize: // val detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options)
לבסוף, מעבירים את התמונה לשיטה
detectInImage
:Java
Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
3. אחזור מידע מברקודים
אם פעולת זיהוי הברקוד תצליח, רשימה של אובייקטים מסוגFirebaseVisionBarcode
תועבר למאזין להצלחה. כל אובייקט FirebaseVisionBarcode
מייצג ברקוד שזוהה בתמונה. לכל ברקוד, אפשר לקבל את קואורדינטות המסגרת שלו בתמונה הקלט, וגם את הנתונים הגולמיים שקודדו על ידי הברקוד. בנוסף, אם הגלאי של הברקוד הצליח לקבוע את סוג הנתונים שמקודדים בברקוד, תוכלו לקבל אובייקט שמכיל נתונים שעברו ניתוח.
לדוגמה:
Java
for (FirebaseVisionBarcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case FirebaseVisionBarcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case FirebaseVisionBarcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Kotlin
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { FirebaseVisionBarcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } FirebaseVisionBarcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
טיפים לשיפור הביצועים בזמן אמת
אם אתם רוצים לסרוק ברקודים באפליקציה בזמן אמת, תוכלו לפעול לפי ההנחיות הבאות כדי להשיג את שיעורי הפריימים הטובים ביותר:
-
לא לתעד קלט ברזולוציה המקורית של המצלמה. במכשירים מסוימים, צילום הקלט ברזולוציה המקורית יוצר תמונות גדולות מאוד (יותר מ-10 מגה-פיקסלים), וכתוצאה מכך זמן האחזור (latency) נמוך מאוד ללא שיפור ברמת הדיוק. במקום זאת, צריך לבקש מהמצלמה רק את הגודל שנחוץ לזיהוי ברקוד: בדרך כלל לא יותר מ-2 מגה-פיקסלים.
אם מהירות הסריקה חשובה לכם, תוכלו להקטין עוד יותר את רזולוציית הצילום. עם זאת, חשוב לזכור את הדרישות המינימליות לגבי גודל הברקוד שמפורטות למעלה.
- צמצום מספר הקריאות למזהה. אם מסגרת וידאו חדשה זמינה בזמן שהגלאי פועל, צריך להסיר את המסגרת.
- אם אתם משתמשים בפלט של הגלאי כדי להוסיף שכבת-על של גרפיקה לתמונה הקלט, קודם צריך לקבל את התוצאה מ-ML Kit, ואז לבצע עיבוד (רנדור) של התמונה ולהוסיף את שכבת-העל בשלב אחד. כך תוכלו לבצע עיבוד (render) למשטח התצוגה רק פעם אחת לכל מסגרת קלט.
-
אם אתם משתמשים ב-Camera2 API, כדאי לצלם תמונות בפורמט
ImageFormat.YUV_420_888
.אם משתמשים ב-Camera API הקודם, צריך לצלם תמונות בפורמט
ImageFormat.NV21
.