Android에서 ML Kit를 사용하여 바코드 스캔

ML Kit를 사용하여 바코드를 인식하고 디코딩할 수 있습니다.

시작하기 전에

  1. 아직 추가하지 않았으면 Android 프로젝트에 Firebase를 추가합니다.
  2. 모듈(앱 수준) Gradle 파일(일반적으로 app/build.gradle)에 ML Kit Android 라이브러리의 종속 항목을 추가합니다.
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1'
    }
    

입력 이미지 가이드라인

  • ML Kit가 바코드를 정확하게 읽으려면 입력 이미지에 충분한 픽셀 데이터로 표시된 바코드가 있어야 합니다.

    대부분의 바코드가 가변 길이 페이로드를 지원하므로 특정 픽셀 데이터 요구사항은 바코드 유형 및 바코드에 인코딩된 데이터 양에 따라 다릅니다. 일반적으로 바코드의 의미 있는 최소 단위는 가로 2픽셀 이상이어야 합니다(2차원 코드의 경우 세로 2픽셀 이상).

    예를 들어 EAN-13 바코드는 가로 1, 2, 3 또는 4단위의 바와 공간으로 구성됩니다. 따라서 이상적인 EAN-13 바코드 이미지는 가로 2, 4, 6, 8픽셀 이상의 바와 공간으로 이루어집니다. EAN-13 바코드는 가로가 총 95단위이므로 바코드는 가로 190픽셀 이상이어야 합니다.

    PDF417 등의 밀집 형식을 사용하려면 ML Kit에서 확실히 읽을 수 있도록 더 큰 픽셀 크기가 필요합니다. 예를 들어 PDF417 코드는 한 행에 가로 17단위 '단어'를 34개까지 사용할 수 있으므로 가로 1,156 픽셀 이상이어야 합니다.

  • 이미지 초점이 잘 맞지 않으면 스캔의 정확도가 저하될 수 있습니다. 허용 가능한 수준의 결과를 얻지 못하는 경우 사용자에게 이미지를 다시 캡처하도록 요청합니다.

  • 일반적인 애플리케이션의 경우 카메라로부터 먼 거리에 놓인 바코드도 감지할 수 있도록 더 높은 해상도의 이미지(예: 1280x720 또는 1920x1080)를 제공하는 것이 좋습니다.

    그러나 지연 시간이 중요한 요소인 애플리케이션에서는 낮은 해상도로 이미지를 캡처하되 바코드 영역이 입력 이미지의 대부분을 차지하도록 하여 성능을 개선할 수 있습니다 또한 실시간 성능 향상을 위한 팁도 참조하세요.

1. 바코드 인식기 구성

읽으려는 바코드 형식을 알고 있는 경우 해당 형식만 인식하도록 구성하여 바코드 인식기의 속도를 높일 수 있습니다.

예를 들어 Aztec 코드와 QR 코드만 인식하려면 다음 예시와 같이 FirebaseVisionBarcodeDetectorOptions 객체를 빌드합니다.

Java

FirebaseVisionBarcodeDetectorOptions options =
        new FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build();

Kotlin+KTX

val options = FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build()

지원되는 형식은 다음과 같습니다.

  • Code 128(FORMAT_CODE_128)
  • Code 39(FORMAT_CODE_39)
  • Code 93(FORMAT_CODE_93)
  • Codabar(FORMAT_CODABAR)
  • EAN-13(FORMAT_EAN_13)
  • EAN-8(FORMAT_EAN_8)
  • ITF(FORMAT_ITF)
  • UPC-A(FORMAT_UPC_A)
  • UPC-E(FORMAT_UPC_E)
  • QR 코드(FORMAT_QR_CODE)
  • PDF417(FORMAT_PDF417)
  • Aztec(FORMAT_AZTEC)
  • Data Matrix(FORMAT_DATA_MATRIX)

2. 바코드 인식기 실행

이미지 속 바코드를 인식하려면 Bitmap, media.Image, ByteBuffer, 바이트 배열, 기기의 파일에서 FirebaseVisionImage 객체를 만듭니다. 그런 다음 FirebaseVisionImage 객체를 FirebaseVisionBarcodeDetectordetectInImage 메서드에 전달합니다.

  1. 이미지에서 FirebaseVisionImage 객체를 만듭니다.

    • 기기의 카메라에서 이미지를 캡처할 때와 같이 media.Image 객체에서 FirebaseVisionImage 객체를 만들려면 media.Image 객체 및 이미지 회전을 FirebaseVisionImage.fromMediaImage()에 전달합니다.

      CameraX 라이브러리를 사용하는 경우 OnImageCapturedListenerImageAnalysis.Analyzer 클래스가 회전 값을 계산하므로 FirebaseVisionImage.fromMediaImage()를 호출하기 전에 ML Kit의 ROTATION_ 상수 중 하나로 회전을 변환하기만 하면 됩니다.

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      이미지 회전을 제공하는 카메라 라이브러리를 사용하지 않는 경우 기기의 카메라 센서 방향 및 기기 회전에서 이미지 회전을 계산할 수 있습니다.

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      그런 다음 media.Image 객체 및 회전 값을 FirebaseVisionImage.fromMediaImage()에 전달합니다.

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • 파일 URI에서 FirebaseVisionImage 객체를 만들려면 앱 컨텍스트 및 파일 URI를 FirebaseVisionImage.fromFilePath()에 전달합니다. ACTION_GET_CONTENT 인텐트를 사용하여 사용자에게 갤러리 앱에서 이미지를 선택하라는 메시지를 표시할 때 유용한 방법입니다.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • ByteBuffer 또는 바이트 배열에서 FirebaseVisionImage 객체를 만들려면 먼저 위에서 설명한 대로 media.Image 입력의 이미지 회전을 계산합니다.

      그런 다음 이미지의 높이, 너비, 색상 인코딩 형식, 회전이 포함된 FirebaseVisionImageMetadata 객체를 만듭니다.

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      버퍼나 배열, 메타데이터 객체를 사용하여 FirebaseVisionImage 객체를 만듭니다.

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Bitmap 객체에서 FirebaseVisionImage 객체를 만들려면 다음 안내를 따르세요.

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap 객체로 표현된 이미지가 추가 회전이 필요 없는 수직 상태여야 합니다.

  2. FirebaseVisionBarcodeDetector의 인스턴스를 가져옵니다.

    Java

    FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
            .getVisionBarcodeDetector();
    // Or, to specify the formats to recognize:
    // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionBarcodeDetector
    // Or, to specify the formats to recognize:
    // val detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options)
  3. 마지막으로 이미지를 detectInImage 메서드에 전달합니다.

    Java

    Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() {
                @Override
                public void onSuccess(List<FirebaseVisionBarcode> barcodes) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
                    });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { barcodes ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener {
                // Task failed with an exception
                // ...
            }

3. 바코드에서 정보 가져오기

바코드 인식 작업이 성공하면 FirebaseVisionBarcode 객체의 목록이 성공 리스너에 전달됩니다. 각 FirebaseVisionBarcode 객체는 이미지에서 인식된 바코드를 나타냅니다. 바코드별로 입력 이미지의 경계 좌표 및 바코드로 인코딩된 원시 데이터를 가져올 수 있습니다. 또한 바코드 인식기가 바코드로 인코딩된 데이터 유형을 결정할 수 있는 경우, 파싱된 데이터가 포함된 객체를 가져올 수 있습니다.

예를 들면 다음과 같습니다.

Java

for (FirebaseVisionBarcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case FirebaseVisionBarcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case FirebaseVisionBarcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Kotlin+KTX

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        FirebaseVisionBarcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        FirebaseVisionBarcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

실시간 성능 향상을 위한 팁

실시간 애플리케이션에서 바코드를 스캔하려는 경우 최상의 프레임 속도를 얻으려면 다음 안내를 따르세요.

  • 카메라의 기본 해상도로 입력을 캡처하지 마세요. 기기에 따라 기본 해상도로 입력을 캡처할 경우 매우 큰(10메가픽셀 이상) 이미지가 생성되므로 정확성 측면에서 아무런 효과 없이 지연 시간만 길어질 수 있습니다. 대신 카메라에서 바코드를 감지하는 데 필요한 크기만 요청하세요. 이 크기는 일반적으로 2메가픽셀 이하입니다.

    스캔 속도가 중요한 경우에는 이미지 캡처 해상도를 더 낮추면 됩니다. 단, 위에서 설명한 바코드 크기 최소 요구사항에 유의해야 합니다.

  • 인식기 호출을 제한합니다. 인식기가 실행 중일 때 새 동영상 프레임이 제공되는 경우 해당 프레임을 삭제합니다.
  • 인식기 출력을 사용해서 입력 이미지에서 그래픽을 오버레이하는 경우 먼저 ML Kit에서 결과를 가져온 후 이미지를 렌더링하고 단일 단계로 오버레이합니다. 이렇게 하면 입력 프레임별로 한 번만 디스플레이 표면에 렌더링됩니다.
  • Camera2 API를 사용할 경우 ImageFormat.YUV_420_888 형식으로 이미지를 캡처합니다.

    이전 Camera API를 사용하는 경우 ImageFormat.NV21 형식으로 이미지를 캡처합니다.