Barcodes mit ML Kit unter Android scannen

Mit ML Kit können Sie Barcodes erkennen und decodieren.

Hinweis

  1. Fügen Sie Ihrem Android-Projekt Firebase hinzu, falls noch nicht geschehen.
  2. Fügen Sie der Gradle-Datei des Moduls (auf Anwendungsebene, in der Regel app/build.gradle) die Abhängigkeiten für die ML Kit-Android-Bibliotheken hinzu:
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1'
    }

Richtlinien für Eingabebilder

  • Damit ML Kit Barcodes korrekt lesen kann, müssen die Eingabebilder Barcodes enthalten, die durch ausreichende Pixeldaten dargestellt werden.

    Die spezifischen Anforderungen an die Pixeldaten hängen sowohl vom Barcodetyp als auch von der Menge der darin codierten Daten ab, da die meisten Barcodes eine Nutzlast mit variabler Länge unterstützen. Im Allgemeinen sollte die kleinste aussagekräftige Einheit des Barcodes mindestens 2 Pixel breit (und bei zweidimensionalen Codes 2 Pixel hoch) sein.

    EAN-13-Barcodes bestehen beispielsweise aus Balken und Leerräumen, die 1, 2, 3 oder 4 Einheiten breit sind. Ein EAN-13-Barcodebild sollte daher idealerweise Balken und Leerräume mit einer Breite von mindestens 2, 4, 6 und 8 Pixeln haben. Da ein EAN-13-Barcode insgesamt 95 Einheiten breit ist, sollte er mindestens 190 Pixel breit sein.

    Für dichtere Formate wie PDF417 sind größere Pixelabmessungen erforderlich, damit ML Kit sie zuverlässig lesen kann. Ein PDF417-Code kann beispielsweise bis zu 34 „Wörter“ mit 17 Einheiten in einer einzigen Zeile enthalten, die idealerweise mindestens 1.156 Pixel breit sein sollte.

  • Ein unscharfer Bildfokus kann die Scangenauigkeit beeinträchtigen. Wenn Sie keine zufriedenstellenden Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.

  • Für typische Anwendungen wird empfohlen, ein Bild mit höherer Auflösung (z. B. 1280 × 720 oder 1920 × 1080) bereitzustellen, damit Barcodes aus größerer Entfernung von der Kamera erkannt werden können.

    Bei Anwendungen, bei denen die Latenz entscheidend ist, können Sie die Leistung jedoch verbessern, indem Sie Bilder mit niedrigerer Auflösung aufnehmen, wobei der Barcode den Großteil des Eingabebilds ausmachen muss. Weitere Informationen finden Sie unter Tipps zur Verbesserung der Echtzeitleistung.

1. Barcode-Erkennung konfigurieren

Wenn Sie wissen, welche Barcodeformate gelesen werden sollen, können Sie die Geschwindigkeit des Barcode-Detektors verbessern, indem Sie ihn so konfigurieren, dass nur diese Formate erkannt werden.

Wenn Sie beispielsweise nur Aztec-Code und QR-Codes erkennen möchten, erstellen Sie ein FirebaseVisionBarcodeDetectorOptions-Objekt wie im folgenden Beispiel:

Java

FirebaseVisionBarcodeDetectorOptions options =
        new FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build();

Kotlin

val options = FirebaseVisionBarcodeDetectorOptions.Builder()
        .setBarcodeFormats(
                FirebaseVisionBarcode.FORMAT_QR_CODE,
                FirebaseVisionBarcode.FORMAT_AZTEC)
        .build()

Die folgenden Formate werden unterstützt:

  • Code 128 (FORMAT_CODE_128)
  • Code 39 (FORMAT_CODE_39)
  • Code 93 (FORMAT_CODE_93)
  • Codabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • QR-Code (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Azteken (FORMAT_AZTEC)
  • Data Matrix (FORMAT_DATA_MATRIX)

2. Barcode-Detektor ausführen

Wenn Sie Barcodes in einem Bild erkennen möchten, erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage-Objekt an die detectInImage-Methode von FirebaseVisionBarcodeDetector.

  1. Erstellen Sie aus Ihrem Bild ein FirebaseVisionImage-Objekt.

    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bilds an FirebaseVisionImage.fromMediaImage().

      Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer für Sie berechnet. Sie müssen ihn also nur in eine der ROTATION_-Konstanten von ML Kit umwandeln, bevor Sie FirebaseVisionImage.fromMediaImage() aufrufen:

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie anhand der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Übergeben Sie dann das media.Image-Objekt und den Drehwert an FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Das ist nützlich, wenn Sie mit einer ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem ByteBuffer oder einem Byte-Array erstellen möchten, berechnen Sie zuerst die Bilddrehung wie oben für die media.Image-Eingabe beschrieben.

      Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt, das die Höhe, Breite, Farbcodierung und Drehung des Bildes enthält:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Verwende den Puffer oder das Array und das Metadatenobjekt, um ein FirebaseVisionImage-Objekt zu erstellen:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Das vom Bitmap-Objekt dargestellte Bild muss aufrecht sein und darf nicht zusätzlich gedreht werden.

  2. Instanz von FirebaseVisionBarcodeDetector abrufen:

    Java

    FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
            .getVisionBarcodeDetector();
    // Or, to specify the formats to recognize:
    // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .visionBarcodeDetector
    // Or, to specify the formats to recognize:
    // val detector = FirebaseVision.getInstance()
    //        .getVisionBarcodeDetector(options)
  3. Übergeben Sie das Bild abschließend an die detectInImage-Methode:

    Java

    Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() {
                @Override
                public void onSuccess(List<FirebaseVisionBarcode> barcodes) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
                    });

    Kotlin

    val result = detector.detectInImage(image)
            .addOnSuccessListener { barcodes ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener {
                // Task failed with an exception
                // ...
            }

3. Informationen aus Barcodes abrufen

Wenn die Barcodeerkennung erfolgreich war, wird dem Erfolgsereignis eine Liste von FirebaseVisionBarcode-Objekten übergeben. Jedes FirebaseVisionBarcode-Objekt steht für einen Barcode, der im Bild erkannt wurde. Für jeden Barcode können Sie die Begrenzungskoordinaten im Eingabebild sowie die vom Barcode codierten Rohdaten abrufen. Wenn der Barcode-Detektor den Typ der vom Barcode codierten Daten ermitteln konnte, können Sie auch ein Objekt mit geparsten Daten abrufen.

Beispiel:

Java

for (FirebaseVisionBarcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case FirebaseVisionBarcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case FirebaseVisionBarcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        FirebaseVisionBarcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        FirebaseVisionBarcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Tipps zur Verbesserung der Echtzeitleistung

Wenn Sie Barcodes in einer Echtzeitanwendung scannen möchten, beachten Sie die folgenden Richtlinien, um die beste Framerate zu erzielen:

  • Nehmen Sie die Eingabe nicht mit der nativen Auflösung der Kamera auf. Auf einigen Geräten führt die Erfassung der Eingabe in der nativen Auflösung zu extrem großen Bildern (mehr als 10 Megapixel), was zu einer sehr schlechten Latenz führt, ohne dass die Genauigkeit verbessert wird. Fordere stattdessen nur die Größe von der Kamera an, die für die Barcodeerkennung erforderlich ist: in der Regel nicht mehr als 2 Megapixel.

    Wenn die Scangeschwindigkeit wichtig ist, können Sie die Auflösung der Bildaufnahme weiter senken. Beachten Sie jedoch die oben genannten Mindestanforderungen an die Barcodegröße.

  • Aufrufe an den Detektor drosseln Wenn während der Laufzeit des Detektors ein neuer Videoframe verfügbar wird, legen Sie ihn ab.
  • Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken auf das Eingabebild zu legen, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. So wird für jeden Eingabeframe nur einmal auf die Displayoberfläche gerendert.
  • Wenn Sie die Camera2 API verwenden, sollten Sie Bilder im ImageFormat.YUV_420_888-Format aufnehmen.

    Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im ImageFormat.NV21-Format auf.