Puedes usar el Kit de AA para reconocer puntos de referencia conocidos en una imagen.
Antes de comenzar
- Si aún no lo hiciste, agrega Firebase a tu proyecto de Android.
- Agrega las dependencias para las bibliotecas de Android del ML Kit al archivo Gradle
(generalmente
app/build.gradle
) de tu módulo (nivel de app):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Si aún no habilitaste las APIs de Cloud en tu proyecto, hazlo de la siguiente manera:
- Abre la página de API del Kit de AA de Firebase console.
-
Si todavía no has actualizado tu proyecto al plan de precios Blaze, haz clic en Actualizar para hacerlo (se te pedirá que realices la actualización únicamente si tu proyecto no está en el plan Blaze).
Solo los proyectos con un plan Blaze pueden usar las API de Cloud.
- Si las API de Cloud no están habilitadas, haz clic en Habilitar las API de Cloud.
Configura el detector de puntos de referencia
Según la configuración predeterminada, el detector de Cloud usa la versión STABLE
del modelo y muestra hasta 10 resultados. Si deseas cambiar alguno de estos ajustes, usa un objeto FirebaseVisionCloudDetectorOptions
para especificar una configuración diferente.
Por ejemplo, para cambiar ambos elementos de la configuración predeterminada, crea un
objeto FirebaseVisionCloudDetectorOptions
como el
siguiente:
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
Kotlin+KTX
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Si quieres utilizar la configuración predeterminada, usa
FirebaseVisionCloudDetectorOptions.DEFAULT
en el próximo paso.
Ejecuta el detector de puntos de referencia
Para reconocer puntos de referencia en una imagen, crea un objetoFirebaseVisionImage
a partir de un Bitmap
, una media.Image
, un ByteBuffer
, un array de bytes o un archivo ubicado en el dispositivo. Luego, pasa el objeto FirebaseVisionImage
al método detectInImage
de FirebaseVisionCloudLandmarkDetector
.
Crea un objeto
FirebaseVisionImage
a partir de tu imagen.-
Para crear un objeto
FirebaseVisionImage
a partir de un objetomedia.Image
, como cuando se captura una imagen con la cámara de un dispositivo, pasa el objetomedia.Image
y la rotación de la imagen aFirebaseVisionImage.fromMediaImage()
.Si usas la biblioteca CameraX, las clases
OnImageCapturedListener
yImageAnalysis.Analyzer
calculan el valor de rotación por ti, así que solo tienes que convertir la rotación en una de las constantesROTATION_
de ML Kit antes de llamar aFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Si no usas una biblioteca de cámaras que te proporcione la rotación de la imagen, puedes calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Luego, pasa el objeto
media.Image
y el valor de rotación aFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Para crear un objeto
FirebaseVisionImage
a partir de un URI de archivo, pasa el contexto de la app y el URI de archivo aFirebaseVisionImage.fromFilePath()
. Esto es útil cuando usas un intentACTION_GET_CONTENT
para solicitarle al usuario que seleccione una imagen de su app de galería.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Para crear un objeto
FirebaseVisionImage
a partir de unByteBuffer
o un array de bytes, primero calcula la rotación de la imagen como se describió anteriormente para la entradamedia.Image
.Luego, crea un objeto
FirebaseVisionImageMetadata
que contenga la altura, el ancho, el formato de codificación de color y la rotación de la imagen:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Usa el búfer o array, y el objeto de metadatos, para crear un objeto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Para crear un objeto
FirebaseVisionImage
a partir de un objetoBitmap
, haz lo siguiente:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
debe estar en posición vertical, sin que sea necesario rotarla.
-
Obtén una instancia de
FirebaseVisionCloudLandmarkDetector
:Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Por último, pasa la imagen al método
detectInImage
:Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Obtén información sobre los puntos de referencia reconocidos
Si la operación de reconocimiento de puntos de referencia se ejecuta correctamente, se pasará una lista de objetosFirebaseVisionCloudLandmark
al objeto de escucha que detecte el resultado correcto. Cada objeto FirebaseVisionCloudLandmark
representa un punto de referencia que se reconoció en la imagen. Por cada punto de referencia, puedes obtener las coordenadas de los límites en la imagen de entrada, el nombre, la latitud y la longitud, el ID de entidad del Gráfico de conocimiento (si está disponible) y la puntuación de confianza de la coincidencia. Por ejemplo:
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
Kotlin+KTX
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Próximos pasos
- Antes de implementar en producción una app que usa una API de Cloud, debes realizar algunos pasos adicionales para prevenir y mitigar el efecto del acceso no autorizado a la API.