Możesz używać ML Kit do rozpoznawania tekstu na zdjęciach. ML Kit zawiera interfejs API ogólnego przeznaczenia do rozpoznawania tekstu na obrazach, np. znaku drogowego, oraz interfejs API zoptymalizowany do rozpoznawania tekstu w dokumentach. Interfejs API ogólnego przeznaczenia zawiera modele działające na urządzeniu i w chmurze. Rozpoznawanie tekstu w dokumentach jest dostępne tylko jako model w chmurze. Porównanie modeli w chmurze i na urządzeniu znajdziesz w sekcji Omówienie.
Zanim zaczniesz
- Jeśli jeszcze tego nie zrobiono, dodaj Firebase do projektu na Androida.
- Dodaj zależności do bibliotek ML Kit na Androida do pliku Gradle modułu (na poziomie aplikacji) (zwykle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Opcjonalne, ale zalecane: jeśli używasz interfejsu API na urządzeniu, skonfiguruj aplikację tak, aby po jej zainstalowaniu ze Sklepu Play automatycznie pobierała model ML na urządzenie.
Aby to zrobić, dodaj do pliku
AndroidManifest.xml
aplikacji następującą deklarację: Jeśli nie włączysz pobierania modeli w czasie instalacji, model zostanie pobrany przy pierwszym uruchomieniu detektora na urządzeniu. Żądania wysłane przed zakończeniem pobierania nie przyniosą żadnych wyników.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="ocr" /> <!-- To use multiple models: android:value="ocr,model2,model3" --> </application>
-
Jeśli chcesz używać modelu opartego na chmurze i nie masz jeszcze włączonych interfejsów API opartych na chmurze w projekcie, zrób to teraz:
- Otwórz stronę interfejsów API usługi ML Kit w konsoli Firebase.
-
Jeśli nie masz jeszcze przeniesionego projektu na abonament Blaze, kliknij Przenieś. (Prośba o przeniesienie pojawi się tylko wtedy, gdy projekt nie jest jeszcze na abonamencie Blaze).
Interfejsów API opartych na Cloud mogą używać tylko projekty na poziomie Blaze.
- Jeśli interfejsy API oparte na chmurze nie są jeszcze włączone, kliknij Włącz interfejsy API oparte na chmurze.
Jeśli chcesz używać tylko modelu na urządzeniu, możesz pominąć ten krok.
Możesz już zacząć rozpoznawać tekst na obrazach.
Wskazówki dotyczące obrazów wejściowych
-
Aby ML Kit mógł dokładnie rozpoznawać tekst, obrazy wejściowe muszą zawierać tekst reprezentowany przez wystarczającą ilość danych pikseli. W przypadku tekstu łacińskiego każdy znak powinien mieć wymiary co najmniej 16 x 16 pikseli. W przypadku tekstu w językach chińskim, japońskim i koreańskim (obsługiwanych tylko przez interfejsy API w chmurze) każdy znak powinien mieć wymiary 24 x 24 piksele. W przypadku wszystkich języków znaki większe niż 24 x 24 piksele nie zapewniają ogólnie lepszej dokładności.
Na przykład obraz o wymiarach 640 x 480 może się dobrze sprawdzić do zeskanowania wizytówki, która zajmuje całą szerokość obrazu. Aby zeskanować dokument wydrukowany na papierze w formacie Letter, może być wymagany obraz o rozmiarze 720 × 1280 pikseli.
-
Złe skupienie obrazu może obniżyć dokładność rozpoznawania tekstu. Jeśli nie uzyskujesz zadowalających wyników, poproś użytkownika o ponowne zrobienie zdjęcia.
-
Jeśli rozpoznawanie tekstu odbywa się w czasie rzeczywistym, warto wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy można przetwarzać szybciej, dlatego aby zmniejszyć opóźnienie, rób zdjęcia w niższych rozdzielczościach (z zachowaniem powyższych wymagań dotyczących dokładności) i upewnij się, że tekst zajmuje jak największą część obrazu. Zobacz też wskazówki dotyczące zwiększania skuteczności w czasie rzeczywistym.
Rozpoznawanie tekstu w obrazach
Aby rozpoznać tekst na obrazie za pomocą modelu lokalnego lub opartego na chmurze, uruchom rozpoznawacza tekstu w sposób opisany poniżej.
1. Uruchom rozpoznawanie tekstu
Aby rozpoznać tekst na obrazie, utwórz obiektFirebaseVisionImage
z użyciem obiektu Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku na urządzeniu. Następnie przekaż obiekt FirebaseVisionImage
metodzie processImage
obiektu FirebaseVisionTextRecognizer
.
Utwórz obiekt
FirebaseVisionImage
na podstawie obrazu.-
Aby utworzyć obiekt
FirebaseVisionImage
na podstawie obiektumedia.Image
, na przykład podczas robienia zdjęcia aparatem urządzenia, przekaż obiektmedia.Image
i obrót obrazu do obiektuFirebaseVisionImage.fromMediaImage()
.Jeśli używasz biblioteki CameraX, klasy
OnImageCapturedListener
iImageAnalysis.Analyzer
obliczają wartość rotacji za Ciebie, więc przed wywołaniem funkcjiFirebaseVisionImage.fromMediaImage()
musisz tylko przekonwertować rotację na jedną z konstantROTATION_
w ML Kit:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie używasz biblioteki aparatu, która zapewnia obrócenie obrazu, możesz obliczyć je na podstawie obrotu urządzenia i orientacji czujnika aparatu na urządzeniu:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Następnie prześlij obiekt
media.Image
i wartość obrotu do funkcjiFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Aby utworzyć obiekt
FirebaseVisionImage
z identyfikatora URI pliku, prześlij kontekst aplikacji i identyfikator URI pliku do funkcjiFirebaseVisionImage.fromFilePath()
. Jest to przydatne, gdy używasz intencjiACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji Galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Aby utworzyć obiekt
FirebaseVisionImage
zByteBuffer
lub tablicy bajtów, najpierw oblicz obrót obrazu w sposób opisany powyżej w przypadku wejściamedia.Image
.Następnie utwórz obiekt
FirebaseVisionImageMetadata
, który zawiera wysokość, szerokość, format kodowania kolorów oraz obrót obrazu:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Użyj bufora lub tablicy oraz obiektu metadanych, aby utworzyć obiekt
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Aby utworzyć obiekt
FirebaseVisionImage
z obiektuBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
musi być pionowy i nie wymagać dodatkowego obracania.
-
Pobierz instancję
FirebaseVisionTextRecognizer
.Aby korzystać z modelu na urządzeniu:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getOnDeviceTextRecognizer();
Kotlin
val detector = FirebaseVision.getInstance() .onDeviceTextRecognizer
Aby korzystać z modelu w chmurze:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Kotlin
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Na koniec przekaż obraz do metody
processImage
:Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Wyodrębnianie tekstu z bloków rozpoznanego tekstu
Jeśli operacja rozpoznawania tekstu się powiedzie, obiektFirebaseVisionText
zostanie przekazany do odbiorcy sukcesu. Obiekt FirebaseVisionText
zawiera pełny tekst rozpoznany na obrazie oraz co najmniej 0 obiektów TextBlock
.
Każdy element TextBlock
reprezentuje prostokątny blok tekstu, który zawiera 0 lub więcej obiektów Line
. Każdy obiekt Line
zawiera co najmniej 0 lub więcej obiektów Element
, które reprezentują słowa i elementy podobne do słów (np. daty, liczby itp.).
W przypadku każdego obiektu TextBlock
, Line
i Element
możesz uzyskać tekst rozpoznany w regionie oraz jego współrzędne ograniczające.
Przykład:
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Wskazówki dotyczące zwiększania skuteczności w czasie rzeczywistym
Jeśli chcesz używać modelu na urządzeniu do rozpoznawania tekstu w czasie rzeczywistym w aplikacji, postępuj zgodnie z tymi wskazówkami, aby uzyskać najlepszą liczbę klatek na sekundę:
- Ograniczaj wywołania do usługi rozpoznawania tekstu. Jeśli podczas działania rozpoznawacza tekstu pojawi się nowa klatka wideo, odrzuć ją.
- Jeśli używasz danych wyjściowych rozpoznawania tekstu do nakładania grafiki na obraz wejściowy, najpierw uzyskaj wynik z ML Kit, a potem wyrenderuj obraz i nałóż go w jednym kroku. W ten sposób renderujesz na powierzchni wyświetlacza tylko raz w przypadku każdej ramki wejściowej.
-
Jeśli używasz interfejsu Camera2 API, rób zdjęcia w formacie
ImageFormat.YUV_420_888
.Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w formacie
ImageFormat.NV21
. - Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak o wymaganiach dotyczących wymiarów obrazu w tym interfejsie API.
Dalsze kroki
- Zanim wdrożysz w wersji produkcyjnej aplikację, która korzysta z Cloud API, wykonaj dodatkowe czynności, aby zapobiec nieautoryzowanemu dostępowi do interfejsu API i zmniejszyć jego skutki.
Rozpoznawanie tekstu na obrazach dokumentów
Aby rozpoznać tekst dokumentu, skonfiguruj i uruchom rozpoznawacza tekstu dokumentu w chmurze zgodnie z opisem poniżej.
Opisany poniżej interfejs API do rozpoznawania tekstu w dokumentach zapewnia wygodę pracy z obrazami dokumentów. Jeśli jednak wolisz interfejs udostępniany przez interfejs API FirebaseVisionTextRecognizer
, możesz zamiast tego skanować dokumenty, konfigurując rozpoznawanie tekstu w chmurze tak, aby używało modelu gęstego tekstu.
Aby użyć interfejsu API rozpoznawania tekstu w dokumentach:
1. Uruchom rozpoznawanie tekstu
Aby rozpoznać tekst na obrazie, utwórz obiektFirebaseVisionImage
z elementu Bitmap
, media.Image
, ByteBuffer
, tablicy bajtów lub pliku na urządzeniu.
Następnie przekaż obiekt FirebaseVisionImage
metodzie processImage
obiektu FirebaseVisionDocumentTextRecognizer
.
Utwórz obiekt
FirebaseVisionImage
na podstawie obrazu.-
Aby utworzyć obiekt
FirebaseVisionImage
na podstawie obiektumedia.Image
, na przykład podczas robienia zdjęcia aparatem urządzenia, przekaż obiektmedia.Image
i obrót obrazu do obiektuFirebaseVisionImage.fromMediaImage()
.Jeśli używasz biblioteki CameraX, klasy
OnImageCapturedListener
iImageAnalysis.Analyzer
obliczają wartość rotacji za Ciebie, więc przed wywołaniem funkcjiFirebaseVisionImage.fromMediaImage()
musisz tylko przekonwertować rotację na jedną z konstantROTATION_
w ML Kit:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Jeśli nie używasz biblioteki aparatu, która zapewnia obrócenie obrazu, możesz obliczyć je na podstawie obrotu urządzenia i orientacji czujnika aparatu na urządzeniu:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Następnie prześlij obiekt
media.Image
i wartość obrotu do funkcjiFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Aby utworzyć obiekt
FirebaseVisionImage
z identyfikatora URI pliku, prześlij kontekst aplikacji i identyfikator URI pliku do funkcjiFirebaseVisionImage.fromFilePath()
. Jest to przydatne, gdy używasz intencjiACTION_GET_CONTENT
, aby poprosić użytkownika o wybranie obrazu z aplikacji Galeria.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Aby utworzyć obiekt
FirebaseVisionImage
zByteBuffer
lub tablicy bajtów, najpierw oblicz obrót obrazu w sposób opisany powyżej w przypadku wejściamedia.Image
.Następnie utwórz obiekt
FirebaseVisionImageMetadata
, który zawiera wysokość, szerokość, format kodowania kolorów oraz obrót obrazu:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Użyj bufora lub tablicy oraz obiektu metadanych, aby utworzyć obiekt
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Aby utworzyć obiekt
FirebaseVisionImage
z obiektuBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
musi być pionowy i nie wymagać dodatkowego obracania.
-
Pobieranie instancji
FirebaseVisionDocumentTextRecognizer
:Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Kotlin
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Na koniec przekaż obraz do metody
processImage
:Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Wyodrębnianie tekstu z bloków rozpoznanego tekstu
Jeśli operacja rozpoznawania tekstu się powiedzie, zwróci obiekt FirebaseVisionDocumentText
. Obiekt FirebaseVisionDocumentText
zawiera pełny tekst rozpoznany na obrazie oraz hierarchię obiektów odzwierciedlającą strukturę rozpoznanego dokumentu:
FirebaseVisionDocumentText.Block
FirebaseVisionDocumentText.Paragraph
FirebaseVisionDocumentText.Word
FirebaseVisionDocumentText.Symbol
W przypadku każdego obiektu Block
, Paragraph
, Word
i Symbol
możesz uzyskać tekst rozpoznany w regionie oraz współrzędne ograniczające tego regionu.
Przykład:
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Kotlin
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Dalsze kroki
- Zanim wdrożysz w wersji produkcyjnej aplikację, która korzysta z Cloud API, wykonaj dodatkowe czynności, aby zapobiec nieautoryzowanemu dostępowi do interfejsu API i zmniejszyć jego skutki.