برای تشخیص متن در تصاویر می توانید از کیت ML استفاده کنید. ML Kit هم یک API همه منظوره مناسب برای تشخیص متن در تصاویر مانند متن تابلوهای خیابان دارد و هم یک API بهینه شده برای تشخیص متن اسناد. API همه منظوره دارای مدل های روی دستگاه و مبتنی بر ابر است. تشخیص متن سند فقط به عنوان یک مدل مبتنی بر ابر در دسترس است. برای مقایسه مدلهای ابر و روی دستگاه، نمای کلی را ببینید.
قبل از شروع
- اگر قبلاً این کار را نکردهاید، Firebase را به پروژه Android خود اضافه کنید .
- وابستگی های کتابخانه های اندروید ML Kit را به فایل Gradle ماژول (سطح برنامه) خود اضافه کنید (معمولا
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
- اختیاری اما توصیه میشود : اگر از API روی دستگاه استفاده میکنید، برنامه خود را طوری پیکربندی کنید که پس از نصب برنامه از فروشگاه Play، مدل ML را بهطور خودکار در دستگاه دانلود کند.
برای انجام این کار، اعلان زیر را به فایل
AndroidManifest.xml
برنامه خود اضافه کنید: اگر دانلودهای مدل در زمان نصب را فعال نکنید، اولین باری که آشکارساز روی دستگاه را اجرا می کنید، مدل دانلود می شود. درخواستهایی که قبل از تکمیل دانلود ارائه میکنید، نتیجهای ندارند.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="ocr" /> <!-- To use multiple models: android:value="ocr,model2,model3" --> </application>
اگر میخواهید از مدل مبتنی بر Cloud استفاده کنید و قبلاً APIهای مبتنی بر ابر را برای پروژه خود فعال نکردهاید، اکنون این کار را انجام دهید:
- صفحه ML Kit APIs کنسول Firebase را باز کنید.
اگر قبلاً پروژه خود را به طرح قیمت گذاری Blaze ارتقا نداده اید، برای انجام این کار، روی ارتقا کلیک کنید. (فقط اگر پروژه شما در طرح Blaze نباشد، از شما خواسته می شود که ارتقا دهید.)
فقط پروژه های سطح Blaze می توانند از API های مبتنی بر ابر استفاده کنند.
- اگر APIهای مبتنی بر Cloud قبلاً فعال نشدهاند، روی Enable Cloud-based APIs کلیک کنید.
اگر می خواهید فقط از مدل روی دستگاه استفاده کنید، می توانید از این مرحله صرف نظر کنید.
اکنون شما آماده شروع به تشخیص متن در تصاویر هستید.
دستورالعمل های تصویر ورودی
برای اینکه کیت ML بتواند متن را به طور دقیق تشخیص دهد، تصاویر ورودی باید حاوی متنی باشند که با داده پیکسلی کافی نشان داده شود. در حالت ایده آل، برای متن لاتین، هر کاراکتر باید حداقل 16x16 پیکسل باشد. برای متن چینی، ژاپنی و کره ای (فقط توسط API های مبتنی بر ابر پشتیبانی می شود)، هر نویسه باید ۲۴×۲۴ پیکسل باشد. برای همه زبان ها، معمولاً هیچ مزیتی برای دقت بزرگتر از 24x24 پیکسل وجود ندارد.
بنابراین، برای مثال، یک تصویر 640x480 ممکن است برای اسکن کارت ویزیتی که تمام عرض تصویر را اشغال می کند، به خوبی کار کند. برای اسکن یک سند چاپ شده روی کاغذ با اندازه حرف، ممکن است به یک تصویر 720x1280 پیکسل نیاز باشد.
فوکوس ضعیف تصویر می تواند به دقت تشخیص متن آسیب برساند. اگر نتایج قابل قبولی دریافت نکردید، از کاربر بخواهید که تصویر را دوباره بگیرد.
اگر متن را در یک برنامه بلادرنگ تشخیص می دهید، ممکن است بخواهید ابعاد کلی تصاویر ورودی را نیز در نظر بگیرید. تصاویر کوچکتر را میتوان سریعتر پردازش کرد، بنابراین برای کاهش تأخیر، تصاویر را با وضوح پایینتر ثبت کنید (با در نظر گرفتن الزامات دقت بالا) و اطمینان حاصل کنید که متن تا حد امکان تصویر را اشغال میکند. همچنین به نکاتی برای بهبود عملکرد در زمان واقعی مراجعه کنید.
تشخیص متن در تصاویر
برای تشخیص متن در یک تصویر با استفاده از یک مدل روی دستگاه یا مبتنی بر ابر، شناسایی متن را همانطور که در زیر توضیح داده شده است اجرا کنید.
1. شناسه متن را اجرا کنید
برای تشخیص متن در یک تصویر، یک شیFirebaseVisionImage
از Bitmap
، media.Image
، ByteBuffer
، آرایه بایت یا یک فایل روی دستگاه ایجاد کنید. سپس، شی FirebaseVisionImage
را به متد processImage
FirebaseVisionTextRecognizer
ارسال کنید.یک شی
FirebaseVisionImage
از تصویر خود ایجاد کنید.برای ایجاد یک شی
FirebaseVisionImage
از یک شیmedia.Image
، مانند هنگام گرفتن تصویر از دوربین دستگاه، شیmedia.Image
Image و چرخش تصویر را بهFirebaseVisionImage.fromMediaImage()
منتقل کنید.اگر از کتابخانه CameraX ، کلاسهای
OnImageCapturedListener
وImageAnalysis.Analyzer
استفاده میکنید، مقدار چرخش را برای شما محاسبه میکنند، بنابراین فقط باید قبل از فراخوانیFirebaseVisionImage.fromMediaImage()
چرخش را به یکی از ثابتهایROTATION_
ML Kit تبدیل کنید:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
اگر از کتابخانه دوربینی که چرخش تصویر را به شما می دهد استفاده نمی کنید، می توانید آن را از روی چرخش دستگاه و جهت سنسور دوربین در دستگاه محاسبه کنید:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
سپس، شی
media.Image
و مقدار چرخش را بهFirebaseVisionImage.fromMediaImage()
ارسال کنید:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- برای ایجاد یک شی
FirebaseVisionImage
از URI فایل، زمینه برنامه و فایل URI را بهFirebaseVisionImage.fromFilePath()
ارسال کنید. این زمانی مفید است که از یک هدفACTION_GET_CONTENT
استفاده می کنید تا از کاربر بخواهید تصویری را از برنامه گالری خود انتخاب کند.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- برای ایجاد یک شی
FirebaseVisionImage
از یکByteBuffer
یا یک آرایه بایت، ابتدا چرخش تصویر را همانطور که در بالا برای ورودیmedia.Image
توضیح داده شد محاسبه کنید.سپس، یک شی
FirebaseVisionImageMetadata
ایجاد کنید که شامل ارتفاع، عرض، فرمت کدگذاری رنگ و چرخش تصویر باشد:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
برای ایجاد یک شی
FirebaseVisionImage
از بافر یا آرایه و شیء فراداده استفاده کنید:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- برای ایجاد یک شی
FirebaseVisionImage
از یک شیBitmap
:تصویر نمایش داده شده توسط شیJava
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
باید عمودی باشد، بدون نیاز به چرخش اضافی.
یک نمونه از
FirebaseVisionTextRecognizer
دریافت کنید.برای استفاده از مدل روی دستگاه:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getOnDeviceTextRecognizer();
Kotlin+KTX
val detector = FirebaseVision.getInstance() .onDeviceTextRecognizer
برای استفاده از مدل مبتنی بر ابر:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Kotlin+KTX
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
در نهایت تصویر را به متد
processImage
منتقل کنید:Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. متن را از بلوک های متن شناخته شده استخراج کنید
اگر عملیات تشخیص متن موفقیت آمیز باشد، یک شیFirebaseVisionText
به شنونده موفقیت آمیز ارسال می شود. یک شی FirebaseVisionText
حاوی متن کامل شناسایی شده در تصویر و صفر یا چند شی TextBlock
است. هر TextBlock
یک بلوک مستطیل شکل از متن را نشان می دهد که شامل صفر یا چند شی Line
است. هر شی Line
حاوی صفر یا چند شی Element
است که بیانگر کلمات و موجودات کلمه مانند (تاریخ، اعداد و غیره) است.
برای هر شیء TextBlock
، Line
و Element
، می توانید متن را در ناحیه و مختصات مرزی منطقه تشخیص دهید.
به عنوان مثال:
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Kotlin+KTX
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
نکاتی برای بهبود عملکرد در زمان واقعی
اگر میخواهید از مدل روی دستگاه برای تشخیص متن در یک برنامه بلادرنگ استفاده کنید، این دستورالعملها را برای دستیابی به بهترین نرخ فریم دنبال کنید:
- دریچه گاز با شناسه متن تماس می گیرد. اگر یک قاب ویدیویی جدید در حالی که تشخیص دهنده متن در حال اجرا است در دسترس قرار گرفت، قاب را رها کنید.
- اگر از خروجی تشخیصدهنده متن برای همپوشانی گرافیک روی تصویر ورودی استفاده میکنید، ابتدا نتیجه را از ML Kit دریافت کنید، سپس تصویر را رندر کنید و در یک مرحله همپوشانی کنید. با انجام این کار، برای هر فریم ورودی فقط یک بار به سطح نمایشگر رندر می دهید.
اگر از Camera2 API استفاده می کنید، تصاویر را با فرمت
ImageFormat.YUV_420_888
بگیرید.اگر از دوربین قدیمیتر API استفاده میکنید، تصاویر را با فرمت
ImageFormat.NV21
بگیرید.- گرفتن تصاویر با وضوح کمتر را در نظر بگیرید. با این حال، الزامات ابعاد تصویر این API را نیز در نظر داشته باشید.
مراحل بعدی
- قبل از استقرار برای تولید برنامهای که از Cloud API استفاده میکند، باید اقدامات بیشتری را برای جلوگیری و کاهش تأثیر دسترسی غیرمجاز API انجام دهید.
تشخیص متن در تصاویر اسناد
برای تشخیص متن یک سند، شناسه متن سند مبتنی بر ابر را پیکربندی و اجرا کنید که در زیر توضیح داده شده است.
API تشخیص متن سند، که در زیر توضیح داده شده است، رابطی را ارائه می دهد که برای کار با تصاویر اسناد راحت تر است. با این حال، اگر رابط ارائه شده توسط FirebaseVisionTextRecognizer
API را ترجیح می دهید، می توانید به جای آن از آن برای اسکن اسناد با پیکربندی تشخیص دهنده متن ابری برای استفاده از مدل متن متراکم استفاده کنید.
برای استفاده از API تشخیص متن سند:
1. شناسه متن را اجرا کنید
برای تشخیص متن در یک تصویر، یک شیFirebaseVisionImage
از Bitmap
، media.Image
، ByteBuffer
، آرایه بایت یا یک فایل روی دستگاه ایجاد کنید. سپس، شی FirebaseVisionImage
را به متد processImage
FirebaseVisionDocumentTextRecognizer
ارسال کنید.یک شی
FirebaseVisionImage
از تصویر خود ایجاد کنید.برای ایجاد یک شی
FirebaseVisionImage
از یک شیmedia.Image
، مانند هنگام گرفتن تصویر از دوربین دستگاه، شیmedia.Image
Image و چرخش تصویر را بهFirebaseVisionImage.fromMediaImage()
منتقل کنید.اگر از کتابخانه CameraX ، کلاسهای
OnImageCapturedListener
وImageAnalysis.Analyzer
استفاده میکنید، مقدار چرخش را برای شما محاسبه میکنند، بنابراین فقط باید قبل از فراخوانیFirebaseVisionImage.fromMediaImage()
چرخش را به یکی از ثابتهایROTATION_
ML Kit تبدیل کنید:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
اگر از کتابخانه دوربینی که چرخش تصویر را به شما می دهد استفاده نمی کنید، می توانید آن را از روی چرخش دستگاه و جهت سنسور دوربین در دستگاه محاسبه کنید:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
سپس، شی
media.Image
و مقدار چرخش را بهFirebaseVisionImage.fromMediaImage()
ارسال کنید:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- برای ایجاد یک شی
FirebaseVisionImage
از URI فایل، زمینه برنامه و فایل URI را بهFirebaseVisionImage.fromFilePath()
ارسال کنید. این زمانی مفید است که از یک هدفACTION_GET_CONTENT
استفاده می کنید تا از کاربر بخواهید تصویری را از برنامه گالری خود انتخاب کند.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- برای ایجاد یک شی
FirebaseVisionImage
از یکByteBuffer
یا یک آرایه بایت، ابتدا چرخش تصویر را همانطور که در بالا برای ورودیmedia.Image
توضیح داده شد محاسبه کنید.سپس، یک شی
FirebaseVisionImageMetadata
ایجاد کنید که شامل ارتفاع، عرض، فرمت کدگذاری رنگ و چرخش تصویر باشد:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
برای ایجاد یک شی
FirebaseVisionImage
از بافر یا آرایه و شیء فراداده استفاده کنید:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- برای ایجاد یک شی
FirebaseVisionImage
از یک شیBitmap
:تصویر نمایش داده شده توسط شیJava
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
باید عمودی باشد، بدون نیاز به چرخش اضافی.
یک نمونه از
FirebaseVisionDocumentTextRecognizer
دریافت کنید:Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
در نهایت تصویر را به متد
processImage
منتقل کنید:Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. متن را از بلوک های متن شناخته شده استخراج کنید
اگر عملیات تشخیص متن موفقیت آمیز باشد، یک شی FirebaseVisionDocumentText
را برمی گرداند. یک شی FirebaseVisionDocumentText
حاوی متن کامل شناسایی شده در تصویر و سلسله مراتبی از اشیاء است که ساختار سند شناسایی شده را منعکس می کند:
-
FirebaseVisionDocumentText.Block
-
FirebaseVisionDocumentText.Paragraph
-
FirebaseVisionDocumentText.Word
-
FirebaseVisionDocumentText.Symbol
برای هر Block
، Paragraph
، Word
و Symbol
، می توانید متن را در منطقه و مختصات مرزی منطقه تشخیص دهید.
به عنوان مثال:
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Kotlin+KTX
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
مراحل بعدی
- قبل از استقرار برای تولید برنامهای که از Cloud API استفاده میکند، باید اقدامات بیشتری را برای جلوگیری و کاهش تأثیر دسترسی غیرمجاز API انجام دهید.