Mit ML Kit können Sie Text in Bildern erkennen. ML Kit bietet sowohl eine Allzweck-API, die sich zum Erkennen von Text in Bildern eignet, z. B. Text auf einem Straßenschild, als auch eine API, die für das Erkennen von Text in Dokumenten optimiert ist. Die Allzweck-API bietet sowohl Modelle auf dem Gerät als auch cloudbasierte Modelle. Die Texterkennung in Dokumenten ist nur als cloudbasiertes Modell verfügbar. Einen Vergleich der Cloud- und On-Device-Modelle finden Sie in der Übersicht.
Hinweis
- Falls noch nicht geschehen, fügen Sie Ihrem Android-Projekt Firebase hinzu.
- Fügen Sie die Abhängigkeiten für die ML Kit Android-Bibliotheken in die Gradle-Datei Ihres Moduls (auf App-Ebene, in der Regel
app/build.gradle
) ein:apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Optional, aber empfohlen: Wenn Sie die On-Device-API verwenden, konfigurieren Sie Ihre App so, dass das ML-Modell automatisch auf das Gerät heruntergeladen wird, nachdem Ihre App aus dem Play Store installiert wurde.
Fügen Sie dazu der Datei
AndroidManifest.xml
Ihrer App die folgende Deklaration hinzu: Wenn Sie keine Modelldownloads bei der Installation aktivieren, wird das Modell beim ersten Ausführen des On-Device-Detektors heruntergeladen. Anfragen, die Sie vor Abschluss des Downloads stellen, liefern keine Ergebnisse.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="ocr" /> <!-- To use multiple models: android:value="ocr,model2,model3" --> </application>
-
Wenn Sie das cloudbasierte Modell verwenden möchten und die cloudbasierten APIs für Ihr Projekt noch nicht aktiviert haben, tun Sie dies jetzt:
- Öffnen Sie in der Firebase-Konsole die Seite ML Kit APIs.
-
Wenn Sie Ihr Projekt noch nicht auf den Blaze-Tarif umgestellt haben, klicken Sie auf Upgrade, um dies zu tun. (Sie werden nur dann zum Upgrade aufgefordert, wenn Ihr Projekt nicht im Blaze-Tarif ist.)
Cloudbasierte APIs können nur in Projekten auf Blaze-Ebene verwendet werden.
- Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.
Wenn Sie nur das On-Device-Modell verwenden möchten, können Sie diesen Schritt überspringen.
Jetzt können Sie mit der Texterkennung in Bildern beginnen.
Richtlinien für Eingabebilder
-
Damit Text von ML Kit genau erkannt werden kann, müssen Eingabebilder Text enthalten, der durch ausreichend Pixeldaten dargestellt wird. Idealerweise sollte jedes Zeichen bei lateinischem Text mindestens 16 × 16 Pixel groß sein. Bei chinesischem, japanischem und koreanischem Text (nur von den cloudbasierten APIs unterstützt) sollte jedes Zeichen 24 × 24 Pixel groß sein. Bei allen Sprachen ist die Genauigkeit bei Zeichen, die größer als 24 × 24 Pixel sind, in der Regel nicht höher.
Ein Bild mit 640 × 480 Pixeln eignet sich beispielsweise gut zum Scannen einer Visitenkarte, die die gesamte Breite des Bildes einnimmt. Wenn Sie ein auf Papier im Letter-Format gedrucktes Dokument scannen möchten, ist möglicherweise ein Bild mit 720 × 1.280 Pixeln erforderlich.
-
Eine schlechte Bildschärfe kann die Genauigkeit der Texterkennung beeinträchtigen. Wenn Sie keine akzeptablen Ergebnisse erhalten, bitten Sie den Nutzer, das Bild noch einmal aufzunehmen.
-
Wenn Sie Text in einer Echtzeitanwendung erkennen, sollten Sie auch die Gesamtabmessungen der Eingabebilder berücksichtigen. Kleinere Bilder können schneller verarbeitet werden. Um die Latenz zu verringern, sollten Sie Bilder mit niedrigeren Auflösungen aufnehmen (unter Berücksichtigung der oben genannten Anforderungen an die Genauigkeit) und darauf achten, dass der Text so viel wie möglich vom Bild einnimmt. Weitere Informationen finden Sie unter Tipps zur Verbesserung der Echtzeitleistung.
Erkennt Text in Bildern
Wenn Sie Text in einem Bild mit einem geräteinternen oder Cloud-basierten Modell erkennen möchten, führen Sie die Texterkennung wie unten beschrieben aus.
1. Texterkennung ausführen
Wenn Sie Text in einem Bild erkennen möchten, erstellen Sie einFirebaseVisionImage
-Objekt aus einem Bitmap
, media.Image
, ByteBuffer
, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage
-Objekt an die processImage
-Methode von FirebaseVisionTextRecognizer
.
Erstellen Sie ein
FirebaseVisionImage
-Objekt aus Ihrem Bild.-
Wenn Sie ein
FirebaseVisionImage
-Objekt aus einemmedia.Image
-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie dasmedia.Image
-Objekt und die Drehung des Bildes anFirebaseVisionImage.fromMediaImage()
.Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen
OnImageCapturedListener
undImageAnalysis.Analyzer
den Rotationswert für Sie. Sie müssen die Rotation also nur in eine derROTATION_
-Konstanten von ML Kit konvertieren, bevor SieFirebaseVisionImage.fromMediaImage()
aufrufen:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie aus der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Übergeben Sie dann das
media.Image
-Objekt und den Rotationswert anFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Wenn Sie ein
FirebaseVisionImage
-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI anFirebaseVisionImage.fromFilePath()
. Das ist nützlich, wenn Sie mit einemACTION_GET_CONTENT
-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Wenn Sie ein
FirebaseVisionImage
-Objekt aus einemByteBuffer
-Objekt oder einem Byte-Array erstellen möchten, berechnen Sie zuerst die Bilddrehung wie oben für diemedia.Image
-Eingabe beschrieben.Erstellen Sie dann ein
FirebaseVisionImageMetadata
-Objekt, das die Höhe, Breite, Farbcodierungsformat und Drehung des Bildes enthält:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Erstellen Sie mit dem Puffer oder Array und dem Metadatenobjekt ein
FirebaseVisionImage
-Objekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- So erstellen Sie ein
FirebaseVisionImage
-Objekt aus einemBitmap
-Objekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
-Objekt dargestellt wird, muss aufrecht sein und darf nicht zusätzlich gedreht werden müssen.
-
Rufen Sie eine Instanz von
FirebaseVisionTextRecognizer
ab.So verwenden Sie das On-Device-Modell:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getOnDeviceTextRecognizer();
Kotlin
val detector = FirebaseVision.getInstance() .onDeviceTextRecognizer
So verwenden Sie das cloudbasierte Modell:
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
Kotlin
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Übergeben Sie das Bild schließlich an die Methode
processImage
:Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Text aus Blöcken mit erkanntem Text extrahieren
Wenn die Texterkennung erfolgreich ist, wird einFirebaseVisionText
-Objekt an den Erfolgslistener übergeben. Ein FirebaseVisionText
-Objekt enthält den im Bild erkannten vollständigen Text und null oder mehr TextBlock
-Objekte.
Jedes TextBlock
steht für einen rechteckigen Textblock, der null oder mehrere Line
-Objekte enthält. Jedes Line
-Objekt enthält null oder mehr Element
-Objekte, die Wörter und wortähnliche Einheiten (z. B. Datumsangaben und Zahlen) darstellen.
Für jedes TextBlock
-, Line
- und Element
-Objekt können Sie den in der Region erkannten Text und die Begrenzungskoordinaten der Region abrufen.
Beispiel:
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
Kotlin
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Tipps zur Verbesserung der Echtzeitleistung
Wenn Sie das On-Device-Modell verwenden möchten, um Text in einer Echtzeitanwendung zu erkennen, sollten Sie die folgenden Richtlinien beachten, um die besten Framerates zu erzielen:
- Drosseln Sie Aufrufe des Texterkennungssystems. Wenn ein neuer Videoframes verfügbar wird, während die Texterkennung ausgeführt wird, verwerfen Sie den Frame.
- Wenn Sie die Ausgabe der Texterkennung verwenden, um Grafiken auf das Eingabebild zu legen, rufen Sie zuerst das Ergebnis von ML Kit ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. Dadurch wird für jeden Eingabe-Frame nur einmal auf die Displayoberfläche gerendert.
-
Wenn Sie die Camera2 API verwenden, nehmen Sie Bilder im
ImageFormat.YUV_420_888
-Format auf.Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im
ImageFormat.NV21
-Format auf. - Nehmen Sie Bilder mit einer niedrigeren Auflösung auf. Beachten Sie jedoch auch die Anforderungen an die Bildabmessungen für diese API.
Nächste Schritte
- Bevor Sie eine App, die eine Cloud API verwendet, in der Produktionsumgebung bereitstellen, sollten Sie einige zusätzliche Schritte unternehmen, um unbefugten API-Zugriff zu verhindern und seine Auswirkungen zu minimieren.
Text in Bildern von Dokumenten erkennen
Wenn Sie den Text eines Dokuments erkennen möchten, konfigurieren Sie den cloudbasierten Dokumenttexterkenner und führen Sie ihn wie unten beschrieben aus.
Die unten beschriebene API zur Texterkennung in Dokumenten bietet eine Schnittstelle, die für die Arbeit mit Bildern von Dokumenten gedacht ist. Wenn Sie jedoch die von der FirebaseVisionTextRecognizer
API bereitgestellte Schnittstelle bevorzugen, können Sie sie stattdessen zum Scannen von Dokumenten verwenden. Konfigurieren Sie dazu den Cloud-Texterkennungsdienst so, dass das Dense-Text-Modell verwendet wird.
So verwenden Sie die API zur Texterkennung in Dokumenten:
1. Texterkennung ausführen
Wenn Sie Text in einem Bild erkennen möchten, erstellen Sie einFirebaseVisionImage
-Objekt aus einem Bitmap
, media.Image
, ByteBuffer
, Byte-Array oder einer Datei auf dem Gerät.
Übergeben Sie dann das FirebaseVisionImage
-Objekt an die processImage
-Methode von FirebaseVisionDocumentTextRecognizer
.
Erstellen Sie ein
FirebaseVisionImage
-Objekt aus Ihrem Bild.-
Wenn Sie ein
FirebaseVisionImage
-Objekt aus einemmedia.Image
-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie dasmedia.Image
-Objekt und die Drehung des Bildes anFirebaseVisionImage.fromMediaImage()
.Wenn Sie die CameraX-Bibliothek verwenden, berechnen die Klassen
OnImageCapturedListener
undImageAnalysis.Analyzer
den Rotationswert für Sie. Sie müssen die Rotation also nur in eine derROTATION_
-Konstanten von ML Kit konvertieren, bevor SieFirebaseVisionImage.fromMediaImage()
aufrufen:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie aus der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Übergeben Sie dann das
media.Image
-Objekt und den Rotationswert anFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Wenn Sie ein
FirebaseVisionImage
-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI anFirebaseVisionImage.fromFilePath()
. Das ist nützlich, wenn Sie mit einemACTION_GET_CONTENT
-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Wenn Sie ein
FirebaseVisionImage
-Objekt aus einemByteBuffer
-Objekt oder einem Byte-Array erstellen möchten, berechnen Sie zuerst die Bilddrehung wie oben für diemedia.Image
-Eingabe beschrieben.Erstellen Sie dann ein
FirebaseVisionImageMetadata
-Objekt, das die Höhe, Breite, Farbcodierungsformat und Drehung des Bildes enthält:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Erstellen Sie mit dem Puffer oder Array und dem Metadatenobjekt ein
FirebaseVisionImage
-Objekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- So erstellen Sie ein
FirebaseVisionImage
-Objekt aus einemBitmap
-Objekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
-Objekt dargestellt wird, muss aufrecht sein und darf nicht zusätzlich gedreht werden müssen.
-
So rufen Sie eine Instanz von
FirebaseVisionDocumentTextRecognizer
ab:Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
Kotlin
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Übergeben Sie das Bild schließlich an die Methode
processImage
:Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
2. Text aus Blöcken mit erkanntem Text extrahieren
Wenn die Texterkennung erfolgreich ist, wird ein FirebaseVisionDocumentText
-Objekt zurückgegeben. Ein FirebaseVisionDocumentText
-Objekt enthält den im Bild erkannten Volltext und eine Hierarchie von Objekten, die die Struktur des erkannten Dokuments widerspiegeln:
FirebaseVisionDocumentText.Block
FirebaseVisionDocumentText.Paragraph
FirebaseVisionDocumentText.Word
FirebaseVisionDocumentText.Symbol
Für jedes Block
-, Paragraph
-, Word
- und Symbol
-Objekt können Sie den in der Region erkannten Text und die Begrenzungskoordinaten der Region abrufen.
Beispiel:
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
Kotlin
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Nächste Schritte
- Bevor Sie eine App, die eine Cloud API verwendet, in der Produktionsumgebung bereitstellen, sollten Sie einige zusätzliche Schritte unternehmen, um unbefugten API-Zugriff zu verhindern und seine Auswirkungen zu minimieren.