You can use ML Kit to detect faces in images and video.
Before you begin
- If you have not already added Firebase to your app, do so by following the steps in the getting started guide.
- Include the ML Kit libraries in your Podfile:
After you install or update your project's Pods, be sure to open your Xcode project using itspod 'Firebase/MLVision', '6.25.0' # If you want to detect face contours (landmark detection and classification # don't require this additional model): pod 'Firebase/MLVisionFaceModel', '6.25.0'
.xcworkspace
. - In your app, import Firebase:
Swift
import Firebase
Objective-C
@import Firebase;
Input image guidelines
For ML Kit to accurately detect faces, input images must contain faces that are represented by sufficient pixel data. In general, each face you want to detect in an image should be at least 100x100 pixels. If you want to detect the contours of faces, ML Kit requires higher resolution input: each face should be at least 200x200 pixels.
If you are detecting faces in a real-time application, you might also want to consider the overall dimensions of the input images. Smaller images can be processed faster, so to reduce latency, capture images at lower resolutions (keeping in mind the above accuracy requirements) and ensure that the subject's face occupies as much of the image as possible. Also see Tips to improve real-time performance.
Poor image focus can hurt accuracy. If you aren't getting acceptable results, try asking the user to recapture the image.
The orientation of a face relative to the camera can also affect what facial features ML Kit detects. See Face Detection Concepts.
1. Configure the face detector
Before you apply face detection to an image, if you want to change any of the face detector's default settings, specify those settings with aVisionFaceDetectorOptions
object. You can change
the following settings:
Settings | |
---|---|
performanceMode |
fast (default) | accurate
Favor speed or accuracy when detecting faces. |
landmarkMode |
none (default) | all
Whether to attempt to detect the facial "landmarks"—eyes, ears, nose, cheeks, mouth—of all detected faces. |
contourMode |
none (default) | all
Whether to detect the contours of facial features. Contours are detected for only the most prominent face in an image. |
classificationMode |
none (default) | all
Whether or not to classify faces into categories such as "smiling", and "eyes open". |
minFaceSize |
CGFloat (default: 0.1 )
The minimum size, relative to the image, of faces to detect. |
isTrackingEnabled |
false (default) | true
Whether or not to assign faces an ID, which can be used to track faces across images. Note that when contour detection is enabled, only one face is detected, so face tracking doesn't produce useful results. For this reason, and to improve detection speed, don't enable both contour detection and face tracking. |
For example, build a VisionFaceDetectorOptions
object like one of the following examples:
Swift
// High-accuracy landmark detection and face classification let options = VisionFaceDetectorOptions() options.performanceMode = .accurate options.landmarkMode = .all options.classificationMode = .all // Real-time contour detection of multiple faces let options = VisionFaceDetectorOptions() options.contourMode = .all
Objective-C
// High-accuracy landmark detection and face classification FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init]; options.performanceMode = FIRVisionFaceDetectorPerformanceModeAccurate; options.landmarkMode = FIRVisionFaceDetectorLandmarkModeAll; options.classificationMode = FIRVisionFaceDetectorClassificationModeAll; // Real-time contour detection of multiple faces FIRVisionFaceDetectorOptions *options = [[FIRVisionFaceDetectorOptions alloc] init]; options.contourMode = FIRVisionFaceDetectorContourModeAll;
2. Run the face detector
To detect faces in an image, pass the image as aUIImage
or a
CMSampleBufferRef
to the VisionFaceDetector
's detect(in:)
method:
- Get an instance of
VisionFaceDetector
:Swift
lazy var vision = Vision.vision() let faceDetector = vision.faceDetector(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionFaceDetector *faceDetector = [vision faceDetector]; // Or, to change the default settings: // FIRVisionFaceDetector *faceDetector = // [vision faceDetectorWithOptions:options];
-
Create a
VisionImage
object using aUIImage
or aCMSampleBufferRef
.To use a
UIImage
:- If necessary, rotate the image so that its
imageOrientation
property is.up
. - Create a
VisionImage
object using the correctly-rotatedUIImage
. Do not specify any rotation metadata—the default value,.topLeft
, must be used.Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
To use a
CMSampleBufferRef
:-
Create a
VisionImageMetadata
object that specifies the orientation of the image data contained in theCMSampleBufferRef
buffer.To get the image orientation:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Then, create the metadata object:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Create a
VisionImage
object using theCMSampleBufferRef
object and the rotation metadata:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- If necessary, rotate the image so that its
-
Then, pass the image to the
detect(in:)
method:Swift
faceDetector.process(visionImage) { faces, error in guard error == nil, let faces = faces, !faces.isEmpty else { // ... return } // Faces detected // ... }
Objective-C
[faceDetector detectInImage:image completion:^(NSArray<FIRVisionFace *> *faces, NSError *error) { if (error != nil) { return; } else if (faces != nil) { // Recognized faces } }];
3. Get information about detected faces
If the face detection operation succeeds, the face detector passes an array ofVisionFace
objects to the completion handler. Each
VisionFace
object represents a face that was detected in the image. For
each face, you can get its bounding coordinates in the input image, as well as
any other information you configured the face detector to find. For example:
Swift
for face in faces { let frame = face.frame if face.hasHeadEulerAngleY { let rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees } if face.hasHeadEulerAngleZ { let rotZ = face.headEulerAngleZ // Head is rotated upward rotZ degrees } // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): if let leftEye = face.landmark(ofType: .leftEye) { let leftEyePosition = leftEye.position } // If contour detection was enabled: if let leftEyeContour = face.contour(ofType: .leftEye) { let leftEyePoints = leftEyeContour.points } if let upperLipBottomContour = face.contour(ofType: .upperLipBottom) { let upperLipBottomPoints = upperLipBottomContour.points } // If classification was enabled: if face.hasSmilingProbability { let smileProb = face.smilingProbability } if face.hasRightEyeOpenProbability { let rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if face.hasTrackingID { let trackingId = face.trackingID } }
Objective-C
for (FIRVisionFace *face in faces) { // Boundaries of face in image CGRect frame = face.frame; if (face.hasHeadEulerAngleY) { CGFloat rotY = face.headEulerAngleY; // Head is rotated to the right rotY degrees } if (face.hasHeadEulerAngleZ) { CGFloat rotZ = face.headEulerAngleZ; // Head is tilted sideways rotZ degrees } // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FIRVisionFaceLandmark *leftEar = [face landmarkOfType:FIRFaceLandmarkTypeLeftEar]; if (leftEar != nil) { FIRVisionPoint *leftEarPosition = leftEar.position; } // If contour detection was enabled: FIRVisionFaceContour *upperLipBottomContour = [face contourOfType:FIRFaceContourTypeUpperLipBottom]; if (upperLipBottomContour != nil) { NSArray<FIRVisionPoint *> *upperLipBottomPoints = upperLipBottomContour.points; if (upperLipBottomPoints.count > 0) { NSLog("Detected the bottom contour of the subject's upper lip.") } } // If classification was enabled: if (face.hasSmilingProbability) { CGFloat smileProb = face.smilingProbability; } if (face.hasRightEyeOpenProbability) { CGFloat rightEyeOpenProb = face.rightEyeOpenProbability; } // If face tracking was enabled: if (face.hasTrackingID) { NSInteger trackingID = face.trackingID; } }
Example of face contours
When you have face contour detection enabled, you get a list of points for each facial feature that was detected. These points represent the shape of the feature. See the Face Detection Concepts Overview for details about how contours are represented.
The following image illustrates how these points map to a face (click the image to enlarge):
Real-time face detection
If you want to use face detection in a real-time application, follow these guidelines to achieve the best framerates:
Configure the face detector to use either face contour detection or classification and landmark detection, but not both:
Contour detection
Landmark detection
Classification
Landmark detection and classification
Contour detection and landmark detection
Contour detection and classification
Contour detection, landmark detection, and classificationEnable
fast
mode (enabled by default).Consider capturing images at a lower resolution. However, also keep in mind this API's image dimension requirements.
- Throttle calls to the detector. If a new video frame becomes available while the detector is running, drop the frame.
- If you are using the output of the detector to overlay graphics on the input image, first get the result from ML Kit, then render the image and overlay in a single step. By doing so, you render to the display surface only once for each input frame. See the previewOverlayView and FIRDetectionOverlayView classes in the showcase sample app for an example.