Ir a la consola

Escanea códigos de barras con el Kit de AA en iOS

Puedes usar el Kit de AA para reconocer y decodificar códigos de barras.

Consulta la muestra de inicio rápido del Kit de AA en GitHub para ver un ejemplo de esta API en uso.

Antes de comenzar

  1. Si aún no agregaste Firebase a tu app, sigue los pasos en la guía de introducción para hacerlo.
  2. Incluye las bibliotecas del Kit de AA en el Podfile:
    pod 'Firebase/Core'
    pod 'Firebase/MLVision'
    pod 'Firebase/MLVisionBarcodeModel'
    
    Después de instalar o actualizar los pods de tu proyecto, asegúrate de abrir el proyecto de Xcode a través de su .xcworkspace.
  3. En tu app, importa Firebase:

    Swift

    import Firebase

    Objective-C

    @import Firebase;

Lineamientos para imágenes de entrada

  • Para que el Kit de AA reconozca códigos de barras con precisión, las imágenes de entrada deben contener un código de barras representado con datos de píxeles suficientes. Por lo general, la unidad mínima de significado de un código de barras debe tener al menos 2 píxeles de ancho (y en códigos de 2 dimensiones, también 2 píxeles de altura).

    Por ejemplo, los códigos de barras EAN-13 contienen barras y espacios con 1, 2, 3 o 4 unidades de ancho, por lo que una imagen de código de barras EAN-13 tiene, idealmente, barras y espacios de al menos 2, 4, 6 y 8 píxeles de ancho. Debido a que un código de barras EAN-13 tiene un ancho de 95 unidades en total, el código de barras deberá tener al menos 190 píxeles de ancho.

    Los formatos más densos, como PDF417, requieren mayores dimensiones de píxeles para que el Kit de AA pueda leerlas de forma confiable. Por ejemplo, un código PDF417 puede tener hasta 34 “palabras” de 17 unidades de ancho en una sola fila, que idealmente tendrá un ancho de 1156 píxeles.

  • Un enfoque de imagen deficiente puede afectar la precisión del escaneo. Si no obtienes resultados aceptables, intenta pedirle al usuario que vuelva a capturar la imagen.

  • Si escaneas códigos de barras en una aplicación en tiempo real, te recomendamos tener en cuenta las dimensiones generales de las imágenes de entrada. Las imágenes más pequeñas se pueden procesar más rápido. Así que, para reducir la latencia, captura las imágenes con resoluciones más bajas (teniendo en cuenta los requisitos de exactitud anteriores) y asegúrate de que el código de barras ocupe la mayor parte de la imagen como sea posible. Consulta también Sugerencias para mejorar el rendimiento en tiempo real.

1. Configura el detector de códigos de barras

Si sabes qué formatos de códigos de barras leerás, puedes configurar el detector de códigos de barras para que solo detecte esos formatos a fin de aumentar su velocidad.

Por ejemplo, para detectar solo código Aztec y códigos QR, crea un objeto VisionBarcodeDetectorOptions como el del ejemplo siguiente:

Swift

let format = VisionBarcodeFormat.all
let barcodeOptions = VisionBarcodeDetectorOptions(formats: format)

Se admiten los siguientes formatos:

  • Code128
  • Code39
  • Code93
  • CodaBar
  • EAN13
  • EAN8
  • ITF
  • UPCA
  • UPCE
  • Código QR
  • PDF417
  • Azteca
  • Data Matrix

Objective-C

FIRVisionBarcodeDetectorOptions *options =
    [[FIRVisionBarcodeDetectorOptions alloc]
     initWithFormats: FIRVisionBarcodeFormatQRCode | FIRVisionBarcodeFormatAztec];

Se admiten los siguientes formatos:

  • Code 128 (FIRVisionBarcodeFormatCode128)
  • Code 39 (FIRVisionBarcodeFormatCode39)
  • Code 93 (FIRVisionBarcodeFormatCode93)
  • Codabar (FIRVisionBarcodeFormatCodaBar)
  • EAN-13 (FIRVisionBarcodeFormatEAN13)
  • EAN-8 (FIRVisionBarcodeFormatEAN8)
  • ITF (FIRVisionBarcodeFormatITF)
  • UPC-A (FIRVisionBarcodeFormatUPCA)
  • UPC-E (FIRVisionBarcodeFormatUPCE)
  • Código QR (FIRVisionBarcodeFormatQRCode)
  • PDF417 (FIRVisionBarcodeFormatPDF417)
  • Aztec (FIRVisionBarcodeFormatAztec)
  • Data Matrix (FIRVisionBarcodeFormatDataMatrix)

2 Ejecuta el detector códigos de barras

Para escanear códigos de barras en una imagen, pasa la imagen como una UIImage o una CMSampleBufferRef al método detect(in:) de VisionBarcodeDetector:

  1. Obtén una instancia de VisionBarcodeDetector:

    Swift

    lazy var vision = Vision.vision()let barcodeDetector = vision.barcodeDetector(options: barcodeOptions)
    

    Objective-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionBarcodeDetector *barcodeDetector = [vision barcodeDetector];
    // Or, to change the default settings:
    // FIRVisionBarcodeDetector *barcodeDetector =
    //     [vision barcodeDetectorWithOptions:options];
    
  2. Crea un objeto VisionImage mediante una UIImage o una CMSampleBufferRef.

    Para usar una UIImage:

    1. Si es necesario, rota la imagen para que la propiedad imageOrientation sea .up.
    2. Usa una UIImage que se haya rotado correctamente para crear un objeto VisionImage. No especifiques los metadatos de rotación. Se debe usar el valor predeterminado .topLeft.

      Swift

      let image = VisionImage(image: uiImage)

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
      

    Para usar una CMSampleBufferRef:

    1. Crea un objeto VisionImageMetadata que especifique la orientación de los datos de la imagen contenidos en el búfer CMSampleBufferRef.

      Por ejemplo, si usas los datos de imagen capturados desde la cámara trasera del dispositivo:

      Swift

      let metadata = VisionImageMetadata()
      
      // Using back-facing camera
      let devicePosition: AVCaptureDevice.Position = .back
      
      let deviceOrientation = UIDevice.current.orientation
      switch deviceOrientation {
      case .portrait:
        metadata.orientation = devicePosition == .front ? .leftTop : .rightTop
      case .landscapeLeft:
        metadata.orientation = devicePosition == .front ? .bottomLeft : .topLeft
      case .portraitUpsideDown:
        metadata.orientation = devicePosition == .front ? .rightBottom : .leftBottom
      case .landscapeRight:
        metadata.orientation = devicePosition == .front ? .topRight : .bottomRight
      case .faceDown, .faceUp, .unknown:
        metadata.orientation = .leftTop
      }
      

      Objective-C

      // Calculate the image orientation
      FIRVisionDetectorImageOrientation orientation;
      
      // Using front-facing camera
      AVCaptureDevicePosition devicePosition = AVCaptureDevicePositionFront;
      
      UIDeviceOrientation deviceOrientation = UIDevice.currentDevice.orientation;
      switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
              if (devicePosition == AVCaptureDevicePositionFront) {
                  orientation = FIRVisionDetectorImageOrientationLeftTop;
              } else {
                  orientation = FIRVisionDetectorImageOrientationRightTop;
              }
              break;
          case UIDeviceOrientationLandscapeLeft:
              if (devicePosition == AVCaptureDevicePositionFront) {
                  orientation = FIRVisionDetectorImageOrientationBottomLeft;
              } else {
                  orientation = FIRVisionDetectorImageOrientationTopLeft;
              }
              break;
          case UIDeviceOrientationPortraitUpsideDown:
              if (devicePosition == AVCaptureDevicePositionFront) {
                  orientation = FIRVisionDetectorImageOrientationRightBottom;
              } else {
                  orientation = FIRVisionDetectorImageOrientationLeftBottom;
              }
              break;
          case UIDeviceOrientationLandscapeRight:
              if (devicePosition == AVCaptureDevicePositionFront) {
                  orientation = FIRVisionDetectorImageOrientationTopRight;
              } else {
                  orientation = FIRVisionDetectorImageOrientationBottomRight;
              }
              break;
          default:
              orientation = FIRVisionDetectorImageOrientationTopLeft;
              break;
      }
      
      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      metadata.orientation = orientation;
      
    2. Crea un objeto VisionImage a través del objeto CMSampleBufferRef y los metadatos de rotación:

      Swift

      let image = VisionImage(buffer: bufferRef)
      image.metadata = metadata
      

      Objective-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:buffer];
      image.metadata = metadata;
      
  3. Luego, pasa la imagen al método detect(in:):

    Swift

    barcodeDetector.detect(in: visionImage) { features, error in
      guard error == nil, let features = features, !features.isEmpty else {
        // ...
        return
      }
    
      // ...
    }
    

    Objective-C

    [barcodeDetector detectInImage:image
                        completion:^(NSArray<FIRVisionBarcode *> *barcodes,
                                     NSError *error) {
      if (error != nil) {
        return;
      } else if (barcodes != nil) {
        // Recognized barcodes
        // ...
      }
    }];
    

3. Obtén información de códigos de barras

Si la operación de reconocimiento de código de barras se ejecuta correctamente, el detector muestra un arreglo de objetos VisionBarcode. Cada objeto VisionBarcode representa un código de barras que se detectó en la imagen. Para cada código de barras, puedes obtener las coordenadas de sus límites en la imagen de entrada, junto con los datos sin procesar codificados en el código de barras. Además, si el detector de códigos de barras pudo determinar el tipo de datos codificados en el código de barras, puedes obtener un objeto que contenga los datos analizados.

Por ejemplo:

Swift

for barcode in barcodes {
  let corners = barcode.cornerPoints

  let displayValue = barcode.displayValue
  let rawValue = barcode.rawValue

  let valueType = barcode.valueType
  switch valueType {
  case .wiFi:
    let ssid = barcode.wifi!.ssid
    let password = barcode.wifi!.password
    let encryptionType = barcode.wifi!.type
  case .URL:
    let title = barcode.url!.title
    let url = barcode.url!.url
  default:
    // See API reference for all supported value types
  }
}

Objective-C

 for (FIRVisionBarcode *barcode in barcodes) {
   NSArray *corners = barcode.cornerPoints;

   NSString *displayValue = barcode.displayValue;
   NSString *rawValue = barcode.rawValue;

   FIRVisionBarcodeValueType valueType = barcode.valueType;
   switch (valueType) {
     case FIRVisionBarcodeValueTypeWiFi:
       // ssid = barcode.wifi.ssid;
       // password = barcode.wifi.password;
       // encryptionType = barcode.wifi.type;
       break;
     case FIRVisionBarcodeValueTypeURL:
       // url = barcode.URL.url;
       // title = barcode.URL.title;
       break;
     // ...
     default:
       break;
   }
 }

Sugerencias para mejorar el rendimiento en tiempo real

Si quieres escanear códigos de barras en una aplicación en tiempo real, sigue estos lineamientos para lograr la mejor velocidad de fotogramas por segundo:

  • Regula las llamadas al detector. Si hay un fotograma de video nuevo disponible mientras se ejecuta el detector de rostro, ignora ese fotograma.
  • Si estás usando la salida del detector de rostros para superponer gráficas en la imagen de entrada, primero obtén el resultado de la detección de rostro del Kit de AA y luego procesa la imagen y la superposición en un solo paso. De esta manera, procesas en la superficie de visualización solo una vez por cada fotograma de entrada. Consulta las clases CameraSourcePreview y GraphicOverlay en la aplicación de muestra de inicio rápido para ver un ejemplo.
  • Si usas la API de Camera2, captura imágenes en formato ImageFormat.YUV_420_888.

    Si usas la API de Camera más antigua, captura imágenes en formato ImageFormat.NV21.

  • Captura imágenes con una resolución más baja. Sin embargo, también ten en cuenta los requisitos de dimensiones de imágenes de esta API.