Após treinar seu próprio modelo usando o AutoML Vision Edge, você poderá usá-lo no app para rotular imagens.
Há duas maneiras de integrar modelos treinados usando o AutoML Vision Edge: é possível agrupar o modelo colocando-o na pasta de recursos do app ou fazer o download dele dinamicamente usando o Firebase.
| Opções de empacotamento de modelos | |
|---|---|
| Incluído no seu app |
|
| Hospedado com o Firebase |
|
Antes de começar
Adicione as dependências das bibliotecas do Android do Kit de ML ao arquivo Gradle do módulo no nível do app, que geralmente é
app/build.gradle:Para agrupar um modelo e seu app:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }Para fazer o download dinâmico de um modelo do Firebase, adicione a dependência
linkFirebase:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }Se você quiser fazer o download de um modelo, adicione o Firebase ao seu projeto do Android caso ainda não tenha feito isso. Essa etapa não é necessária para empacotar o modelo.
1. Carregar o modelo
Configurar uma fonte de modelo local
Para empacotar o modelo e o aplicativo, siga estas etapas:
Extraia o modelo e os metadados dele do arquivo ZIP que você salvou usando o Console do Firebase. Recomendamos o uso dos arquivos da forma como foram transferidos no download, sem modificações, inclusive nos nomes.
Inclua seu modelo e os arquivos de metadados dele no pacote do aplicativo:
- Se você não tiver uma pasta de recursos no projeto, crie uma
clicando com o botão direito do mouse na pasta
app/e, em seguida, em Novo > Pasta > Pasta de recursos. - Crie uma subpasta dentro da pasta de recursos para armazenar os arquivos do modelo.
- Copie os arquivos
model.tflite,dict.txtemanifest.jsonpara a subpasta (todos os três arquivos precisam estar na mesma pasta).
- Se você não tiver uma pasta de recursos no projeto, crie uma
clicando com o botão direito do mouse na pasta
Adicione o seguinte ao arquivo
build.gradledo app para garantir que o Gradle não compacte o arquivo de modelo ao criar o app:android { // ... aaptOptions { noCompress "tflite" } }O arquivo do modelo será incluído no pacote do app e vai estar disponível para o Kit de ML como um recurso bruto.
Crie o objeto
LocalModel, especificando o caminho para o arquivo de manifesto do modelo:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Configurar uma fonte de modelo hospedada no Firebase
Para usar o modelo hospedado remotamente, crie um objeto CustomRemoteModel,
especificando o nome que você atribuiu ao modelo quando o publicou:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Em seguida, inicie a tarefa de download do modelo, especificando as condições sob as quais você quer permitir o download. Se o modelo não estiver no dispositivo ou se uma versão mais recente do modelo estiver disponível, a tarefa fará o download do modelo de forma assíncrona do Firebase:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Muitos apps iniciam a tarefa de download no código de inicialização, mas você pode fazer isso a qualquer momento antes de precisar usar o modelo.
Criar um rotulador de imagens a partir do modelo
Depois de configurar as origens do modelo, crie um objeto ImageLabeler usando uma
delas.
Se você tiver apenas um modelo empacotado localmente, basta criar um rotulador usando o objeto CustomImageLabelerOptions e configurar o limite de pontuação de confiança que você quer exigir. Consulte Avaliar seu modelo:
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Se você tiver um modelo hospedado remotamente, será necessário verificar se foi feito
o download dele antes de executá-lo. É possível verificar o status da tarefa de download
do modelo usando o método isModelDownloaded() do gerenciador de modelos.
Embora essa confirmação seja necessária apenas antes de executar o rotulador, se você tem um modelo hospedado remotamente e um modelo empacotado localmente, o ideal é fazer a verificação ao instanciar o rotulador de imagens: crie um rotulador usando o modelo remoto se ele tiver sido transferido por download. Caso contrário, use o modelo local.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Se você tiver apenas um modelo hospedado remotamente, desative o recurso relacionado
ao modelo (por exemplo, ocultando ou esmaecendo parte da interface) até
confirmar que o download do modelo foi concluído. Para fazer isso, anexe um listener
ao método download() do gerenciador de modelos:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Preparar a imagem de entrada
Em seguida, para cada imagem que você quer rotular, crie um objeto
InputImage usando sua imagem. O rotulador de imagens é executado mais rapidamente quando você usa Bitmap
ou, se você usa a API camera2, um YUV_420_888 media.Image. Essas opções são
recomendadas quando possível.
Você pode criar InputImage a partir de diferentes origens, cada uma explicada abaixo.
Como usar um media.Image
Para criar um objeto InputImage usando um
objeto media.Image, como quando você captura uma imagem da
câmera de um dispositivo, transmita o objeto media.Image e a
rotação da imagem para InputImage.fromMediaImage().
Se você usar a biblioteca
CameraX, as classes OnImageCapturedListener e
ImageAnalysis.Analyzer vão calcular o valor de rotação
automaticamente.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Se você não usar uma biblioteca de câmera que ofereça o grau de rotação da imagem, será possível calcular usando o grau de rotação do dispositivo e a orientação do sensor da câmera:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Em seguida, transmita o objeto media.Image e o
valor do grau de rotação para InputImage.fromMediaImage():
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Como usar um URI de arquivo
Para criar um objeto InputImage usando o URI de um arquivo, transmita
o contexto do app e o URI do arquivo para
InputImage.fromFilePath(). Isso é útil ao usar
uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione
uma imagem do app de galeria dele.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Como usar ByteBuffer ou ByteArray
Para criar um objeto InputImage usando um
ByteBuffer ou ByteArray, primeiro calcule o grau de rotação da imagem
conforme descrito anteriormente para a entrada de media.Image.
Em seguida, crie o objeto InputImage com o buffer ou a matriz, com a altura,
a largura, o formato de codificação de cores e o grau de rotação da imagem:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Como usar um Bitmap
Para criar um objeto InputImage usando um
objeto Bitmap, faça a seguinte declaração:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
A imagem é representada por um objeto Bitmap com os graus de rotação.
3. Executar o rotulador de imagens
Para rotular objetos em uma imagem, transmita o objeto image para o método process()
do ImageLabeler.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Obter informações sobre os objetos rotulados
Se a operação de rotulagem de imagem for bem-sucedida, uma lista de objetos
ImageLabel será transmitida ao listener de êxito. Cada objeto ImageLabel representa
algo que foi rotulado na imagem. Você pode conferir a descrição de texto
de cada rótulo, a pontuação de confiança da correspondência e o índice da correspondência.
Exemplo:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Dicas para melhorar o desempenho em tempo real
Caso você queira rotular imagens em um aplicativo em tempo real, siga estas diretrizes para ter as melhores taxas de frames:
- Limite as chamadas para o rotulador de imagens. Se um novo frame de vídeo estiver disponível enquanto o rotulador de imagens estiver em execução, elimine o frame. Consulte a classe
VisionProcessorBaseno app de amostra do guia de início rápido para conferir um exemplo. - Se você estiver usando a saída do rotulador de imagens para sobrepor elementos gráficos na
imagem de entrada, primeiro acesse o resultado e, em seguida, renderize a imagem
e a sobreposição em uma única etapa. Ao fazer isso, você renderiza a superfície de exibição
apenas uma vez para cada quadro de entrada. Consulte as classes
CameraSourcePrevieweGraphicOverlayno app de amostra do guia de início rápido para conferir um exemplo. -
Se você usar a API Camera2, capture imagens no formato
ImageFormat.YUV_420_888.Se você usar a API Camera mais antiga, capture imagens no formato
ImageFormat.NV21.