Dopo aver addestrato il tuo modello utilizzando AutoML Vision Edge, puoi utilizzarlo nella tua app per etichettare le immagini.
Esistono due modi per integrare i modelli addestrati da AutoML Vision Edge: raggruppa il modello inserendolo nella cartella degli asset dell'app. da Firebase in modo dinamico.
Opzioni di raggruppamento dei modelli | |
---|---|
Raggruppati nella tua app |
|
Ospitato con Firebase |
|
Prima di iniziare
Aggiungi le dipendenze per le librerie Android ML Kit agli file gradle a livello di app, che in genere è
app/build.gradle
:Per raggruppare un modello con la tua app:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
Per scaricare dinamicamente un modello da Firebase, aggiungi
linkFirebase
:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
Se vuoi scaricare un modello, assicurati di aggiungi Firebase al tuo progetto Android, se non l'hai già fatto. Questa operazione non è necessaria se includi il modello.
1. Carica il modello
Configura un'origine del modello locale
Per raggruppare il modello con la tua app:
Estrai il modello e i relativi metadati dall'archivio ZIP che hai scaricato dalla console Firebase. Ti consigliamo di utilizzare i file così come li hai scaricati senza apportare modifiche (inclusi i nomi dei file).
Includi il modello e i relativi file di metadati nel pacchetto dell'app:
- Se nel progetto non è presente una cartella di asset, creane una
facendo clic con il tasto destro del mouse sulla cartella
app/
, poi facendo clic Nuovo > Cartella > Cartella Asset. - Crea una sottocartella all'interno della cartella degli asset per contenere il modello .
- Copia i file
model.tflite
,dict.txt
emanifest.json
alla sottocartella (tutti e tre i file devono trovarsi nella stessa cartella).
- Se nel progetto non è presente una cartella di asset, creane una
facendo clic con il tasto destro del mouse sulla cartella
Aggiungi quanto segue al file
build.gradle
dell'app per assicurarti Gradle non comprime il file del modello durante la creazione dell'app:android { // ... aaptOptions { noCompress "tflite" } }
Il file del modello sarà incluso nel pacchetto dell'app e sarà disponibile per ML Kit come asset non elaborato.
Crea l'oggetto
LocalModel
, specificando il percorso del manifest del modello file:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Configurare un'origine modello ospitata su Firebase
Per utilizzare il modello ospitato in remoto, crea un oggetto CustomRemoteModel
,
specificando il nome assegnato al modello al momento della pubblicazione:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Poi, avvia l'attività di download del modello, specificando le condizioni in cui vuoi consentire il download. Se il modello non è presente sul dispositivo o se una versione più recente del modello, l'attività scaricherà in modo asincrono modello di Firebase:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Molte app avviano l'attività di download nel codice di inizializzazione, ma puoi farlo in qualsiasi momento, prima di utilizzare il modello.
Creare un'etichettatrice di immagini dal modello
Dopo aver configurato le origini del modello, crea un oggetto ImageLabeler
da uno
alcune.
Se hai solo un modello aggregato localmente, crea un'etichetta dall'oggetto CustomImageLabelerOptions
e configura la soglia del punteggio di affidabilità che vuoi richiedere (vedi Valutare il modello):
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Se il tuo modello è ospitato in remoto, dovrai verificare che sia stato
scaricato prima di eseguirlo. Puoi controllare lo stato del download del modello
utilizzando il metodo isModelDownloaded()
del gestore del modello.
Anche se devi solo confermare prima di eseguire l'etichettatore, se sia un modello ospitato in remoto sia uno in bundle locale, di eseguire questo controllo quando si crea un'istanza dell'etichettatore delle immagini: etichettatore dal modello remoto, se è stato scaricato, e dall'etichetta modello di machine learning.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Se disponi solo di un modello ospitato in remoto, devi disattivare le relative
funzionalità, ad esempio rendere non selezionabile o nascondere parte dell'interfaccia utente, fino a quando
confermi che il modello è stato scaricato. Puoi farlo collegando un listener
al metodo download()
del gestore del modello:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Prepara l'immagine di input
Quindi, per ogni immagine da etichettare, crea una InputImage
.
un oggetto dall'immagine. Lo strumento di etichettatura delle immagini è più veloce quando usi un'istruzione Bitmap
oppure, se usi l'API camera2, un YUV_420_888 media.Image
, che sono
consigliati quando possibile.
Puoi creare un InputImage
da origini diverse, ognuna spiegata di seguito.
Utilizzo di un media.Image
Per creare un oggetto InputImage
da un
media.Image
, ad esempio quando acquisisci un'immagine da un
fotocamera del dispositivo, passa l'oggetto media.Image
e l'oggetto
rotazione in InputImage.fromMediaImage()
.
Se utilizzi
nella libreria di CameraX, OnImageCapturedListener
e
ImageAnalysis.Analyzer
classi calcolano il valore di rotazione
per te.
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Se non utilizzi una raccolta di videocamere che fornisce il grado di rotazione dell'immagine, può calcolarlo in base al grado di rotazione e all'orientamento della fotocamera nel dispositivo:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Quindi, passa l'oggetto media.Image
e
valore del grado di rotazione su InputImage.fromMediaImage()
:
Kotlin+KTX
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Utilizzo di un URI del file
Per creare un oggetto InputImage
da un URI file, passa il contesto dell'app e l'URI file a InputImage.fromFilePath()
. È utile quando
utilizza un intent ACTION_GET_CONTENT
per chiedere all'utente di selezionare
un'immagine dall'app Galleria.
Kotlin+KTX
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Utilizzo di un ByteBuffer
o ByteArray
Per creare un oggetto InputImage
da un
ByteBuffer
o ByteArray
, calcola prima l'immagine
grado di rotazione come descritto in precedenza per l'input media.Image
.
Quindi, crea l'oggetto InputImage
con il buffer o l'array, insieme al campo
altezza, larghezza, formato di codifica del colore e grado di rotazione:
Kotlin+KTX
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Utilizzo di un Bitmap
Per creare un oggetto InputImage
da un
Bitmap
, effettua la seguente dichiarazione:
Kotlin+KTX
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
L'immagine è rappresentata da un oggetto Bitmap
e da un grado di rotazione.
3. Esegui l'etichettatore delle immagini
Per etichettare gli oggetti in un'immagine, passa l'oggetto image
al metodo process()
di ImageLabeler
.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Ottieni informazioni sugli oggetti etichettati
Se l'operazione di etichettatura delle immagini ha esito positivo, viene visualizzato un elenco di ImageLabel
vengono passati al listener di eventi riuscito. Ogni oggetto ImageLabel
rappresenta
un elemento etichettato nell'immagine. Puoi visualizzare il testo di ogni etichetta
la descrizione, il punteggio di confidenza della corrispondenza e l'indice della corrispondenza.
Ad esempio:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Suggerimenti per migliorare il rendimento in tempo reale
Se vuoi etichettare le immagini in un'applicazione in tempo reale, segui queste linee guida per ottenere le migliori frequenze frame:
- Limita le chiamate all'etichettatore delle immagini. Se un nuovo fotogramma
disponibili mentre l'etichettatore delle immagini è in esecuzione, rilascia il frame. Consulta
VisionProcessorBase
nell'app di esempio della guida rapida per un esempio. - Se stai utilizzando l'output dello strumento di etichettatura delle immagini per sovrapporre gli elementi grafici
l'immagine di input, ottenere prima il risultato, quindi eseguire il rendering dell'immagine
e la sovrapposizione in un solo passaggio. In questo modo, puoi visualizzare i contenuti
solo una volta per ogni frame di input. Per un esempio, consulta le classi
CameraSourcePreview
eGraphicOverlay
nell'app di esempio della guida di avvio rapido. -
Se utilizzi l'API Camera2, acquisisci le immagini in Formato
ImageFormat.YUV_420_888
.Se utilizzi la precedente API Camera, acquisisci le immagini in formato
ImageFormat.NV21
.