После обучения собственной модели с помощью AutoML Vision Edge вы можете использовать ее в своем приложении для разметки изображений.
Существует два способа интеграции моделей, обученных с помощью AutoML Vision Edge: вы можете упаковать модель, поместив ее в папку ресурсов вашего приложения, или вы можете динамически загрузить ее из Firebase.
| Варианты комплектации моделей | |
|---|---|
| Встроено в ваше приложение |
|
| Размещено на Firebase |
|
Прежде чем начать
Добавьте зависимости для библиотек ML Kit Android в файл gradle вашего модуля, обычно это
app/build.gradle:Для включения модели в ваше приложение:
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }Для динамической загрузки модели из Firebase добавьте зависимость
linkFirebase:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }Если вы хотите загрузить модель , убедитесь, что вы добавили Firebase в свой проект Android , если вы еще этого не сделали. Это не требуется при сборке модели.
1. Загрузите модель.
Настройте локальный источник модели.
Чтобы включить модель в ваше приложение:
Извлеките модель и её метаданные из загруженного ZIP-архива через консоль Firebase . Рекомендуем использовать файлы в том виде, в котором вы их скачали, без изменений (включая имена файлов).
Включите вашу модель и файлы метаданных в пакет вашего приложения:
- Если в вашем проекте нет папки assets, создайте её, щёлкнув правой кнопкой мыши по папке
app/, а затем выбрав New > Folder > Assets Folder . - Создайте подпапку внутри папки assets для хранения файлов модели.
- Скопируйте файлы
model.tflite,dict.txtиmanifest.jsonв подпапку (все три файла должны находиться в одной папке).
- Если в вашем проекте нет папки assets, создайте её, щёлкнув правой кнопкой мыши по папке
Добавьте следующее в файл
build.gradleвашего приложения, чтобы Gradle не сжимал файл модели при сборке приложения:android { // ... aaptOptions { noCompress "tflite" } }Файл модели будет включен в пакет приложения и будет доступен для ML Kit в качестве исходного ресурса.
Создайте объект
LocalModel, указав путь к файлу манифеста модели:Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();Котлин
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Настройте источник модели, размещенный в Firebase.
Для использования удаленно размещенной модели создайте объект CustomRemoteModel , указав имя, которое вы присвоили модели при ее публикации:
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Котлин
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модель отсутствует на устройстве или если доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Котлин
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
Во многих приложениях задача загрузки запускается в коде инициализации, но вы можете сделать это в любой момент до того, как вам понадобится использовать модель.
Создайте средство разметки изображений на основе вашей модели.
После настройки источников модели создайте объект ImageLabeler на основе одного из них.
Если у вас есть только локально упакованная модель, просто создайте объект разметки из объекта CustomImageLabelerOptions и настройте требуемый пороговый уровень достоверности (см. раздел «Оценка модели» ):
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Котлин
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Если у вас есть удаленно размещенная модель, вам необходимо убедиться, что она загружена, прежде чем запускать ее. Вы можете проверить статус задачи загрузки модели, используя метод isModelDownloaded() менеджера моделей.
Хотя подтверждение этого требуется только перед запуском средства разметки изображений, если у вас есть как удаленно размещенная модель, так и локально упакованная модель, имеет смысл выполнить эту проверку при создании экземпляра средства разметки изображений: создать средство разметки из удаленной модели, если она была загружена, и из локальной модели в противном случае.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Котлин
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Если у вас есть только удалённо размещённая модель, следует отключить связанные с ней функции — например, сделать часть пользовательского интерфейса неактивной или скрытой — до тех пор, пока вы не подтвердите загрузку модели. Это можно сделать, добавив обработчик событий к методу download() менеджера моделей:
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Котлин
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Подготовьте входное изображение.
Затем для каждого изображения, которое вы хотите разметить, создайте объект InputImage из вашего изображения. Программа разметки изображений работает быстрее всего при использовании объекта Bitmap или, если вы используете API camera2, объекта YUV_420_888 media.Image , что рекомендуется по возможности.
Вы можете создать InputImage из различных источников, каждый из которых описан ниже.
Использование media.Image
Чтобы создать объект InputImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и угол поворота изображения в метод InputImage.fromMediaImage() .
Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer автоматически вычисляют значение поворота.
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Если вы не используете библиотеку для работы с камерой, которая предоставляет данные об угле поворота изображения, вы можете рассчитать его, исходя из угла поворота устройства и ориентации датчика камеры в устройстве:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Затем передайте объект media.Image и значение угла поворота в InputImage.fromMediaImage() :
Kotlin
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Использование URI файла
Чтобы создать объект InputImage из URI файла, передайте контекст приложения и URI файла в метод InputImage.fromFilePath() . Это полезно, когда вы используете интент ACTION_GET_CONTENT чтобы предложить пользователю выбрать изображение из галереи приложения.
Kotlin
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Использование ByteBuffer или ByteArray
Чтобы создать объект InputImage из ByteBuffer или ByteArray , сначала вычислите угол поворота изображения, как описано ранее для входного объекта media.Image . Затем создайте объект InputImage , используя буфер или массив, а также высоту, ширину изображения, формат кодирования цвета и угол поворота:
Kotlin
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Использование Bitmap
Для создания объекта InputImage из объекта Bitmap необходимо сделать следующее объявление:
Kotlin
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
Изображение представлено объектом Bitmap вместе с градусами поворота.
3. Запустите программу для разметки изображений.
Для добавления меток к объектам на изображении передайте объект image в метод process() класса ImageLabeler .
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Котлин
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Получите информацию об объектах с соответствующими обозначениями.
Если операция разметки изображения прошла успешно, в обработчик успешного выполнения передается список объектов ImageLabel . Каждый объект ImageLabel представляет собой элемент, помеченный на изображении. Вы можете получить текстовое описание каждой метки, оценку достоверности совпадения и индекс совпадения. Например:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Котлин
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Советы по повышению производительности в режиме реального времени
Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям, чтобы добиться наилучшей частоты кадров:
- Удерживайте вызовы функции разметки изображений. Если во время работы функции разметки изображений появляется новый видеокадр, отбросьте его. Пример можно увидеть в классе
VisionProcessorBaseв примере быстрого запуска приложения. - Если вы используете выходные данные средства разметки изображений для наложения графики на входное изображение, сначала получите результат, а затем отрендерите изображение и наложение за один шаг. Таким образом, вы будете отрендеривать изображение на поверхности дисплея только один раз для каждого входного кадра. Пример можно увидеть в классах
CameraSourcePreviewиGraphicOverlayв примере быстрого запуска приложения. При использовании API Camera2, захватывайте изображения в формате
ImageFormat.YUV_420_888.Если вы используете более старую версию Camera API, захватывайте изображения в формате
ImageFormat.NV21.