קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
בגרסה 22.0.2 של ספריית firebase-ml-model-interpreter מוצגת שיטה חדשה, getLatestModelFile(), שמאפשרת לקבל את המיקום במכשיר של מודלים בהתאמה אישית. אפשר להשתמש בשיטה הזו כדי ליצור ישירות מופע של אובייקט TensorFlow Lite Interpreter, שאפשר להשתמש בו במקום העטיפה FirebaseModelInterpreter.
זו הגישה המועדפת מכאן והלאה. מכיוון שגרסת המפענח של TensorFlow Lite לא מקושרת יותר לגרסת ספריית Firebase, יש לכם יותר גמישות לשדרג לגרסאות חדשות של TensorFlow Lite מתי שתרצו, או להשתמש בקלות רבה יותר בגרסאות מותאמות אישית של TensorFlow Lite.
בדף הזה מוסבר איך אפשר לעבור משימוש ב-FirebaseModelInterpreter ל-TensorFlow Lite Interpreter.
1. עדכון התלות של הפרויקט במשאבים
מעדכנים את יחסי התלות של הפרויקט כך שיכללו את גרסה 22.0.2 של הספרייה firebase-ml-model-interpreter (או גרסה חדשה יותר) ואת הספרייה tensorflow-lite:
valremoteModel=FirebaseCustomRemoteModel.Builder("your_model").build()FirebaseModelManager.getInstance().getLatestModelFile(remoteModel).addOnCompleteListener{task->
valmodelFile=task.getResult()if(modelFile!=null){// Instantiate an org.tensorflow.lite.Interpreter object.interpreter=Interpreter(modelFile)}}
Java
FirebaseCustomRemoteModelremoteModel=newFirebaseCustomRemoteModel.Builder("your_model").build();FirebaseModelManager.getInstance().getLatestModelFile(remoteModel).addOnCompleteListener(newOnCompleteListener<File>(){@OverridepublicvoidonComplete(@NonNullTask<File>task){FilemodelFile=task.getResult();if(modelFile!=null){// Instantiate an org.tensorflow.lite.Interpreter object.Interpreterinterpreter=newInterpreter(modelFile);}}});
3. עדכון קוד ההכנה של הקלט והפלט
באמצעות FirebaseModelInterpreter, אתם מציינים את צורות הקלט והפלט של המודל על ידי העברת אובייקט FirebaseModelInputOutputOptions למתורגמן כשמריצים אותו.
במקום זאת, במפרש של TensorFlow Lite, מקצים אובייקטים ByteBuffer בגודל המתאים לקלט ולפלט של המודל.
לדוגמה, אם למודל יש צורת קלט של [1 224 224 3] float ערכים וצורת פלט של [1 1000] float ערכים, צריך לבצע את השינויים הבאים:
לפני
Kotlin
valinputOutputOptions=FirebaseModelInputOutputOptions.Builder().setInputFormat(0,FirebaseModelDataType.FLOAT32,intArrayOf(1,224,224,3)).setOutputFormat(0,FirebaseModelDataType.FLOAT32,intArrayOf(1,1000)).build()valinput=ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())// Then populate with input data.valinputs=FirebaseModelInputs.Builder().add(input).build()interpreter.run(inputs,inputOutputOptions).addOnSuccessListener{outputs->
// ...}.addOnFailureListener{// Task failed with an exception.// ...}
Java
FirebaseModelInputOutputOptionsinputOutputOptions=newFirebaseModelInputOutputOptions.Builder().setInputFormat(0,FirebaseModelDataType.FLOAT32,newint[]{1,224,224,3}).setOutputFormat(0,FirebaseModelDataType.FLOAT32,newint[]{1,1000}).build();float[][][][]input=newfloat[1][224][224][3];// Then populate with input data.FirebaseModelInputsinputs=newFirebaseModelInputs.Builder().add(input).build();interpreter.run(inputs,inputOutputOptions).addOnSuccessListener(newOnSuccessListener<FirebaseModelOutputs>(){@OverridepublicvoidonSuccess(FirebaseModelOutputsresult){// ...}}).addOnFailureListener(newOnFailureListener(){@OverridepublicvoidonFailure(@NonNullExceptione){// Task failed with an exception// ...}});
אחרי
Kotlin
valinBufferSize=1*224*224*3*java.lang.Float.SIZE/java.lang.Byte.SIZEvalinputBuffer=ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())// Then populate with input data.valoutBufferSize=1*1000*java.lang.Float.SIZE/java.lang.Byte.SIZEvaloutputBuffer=ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())interpreter.run(inputBuffer,outputBuffer)
Java
intinBufferSize=1*224*224*3*java.lang.Float.SIZE/java.lang.Byte.SIZE;ByteBufferinputBuffer=ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());// Then populate with input data.intoutBufferSize=1*1000*java.lang.Float.SIZE/java.lang.Byte.SIZE;ByteBufferoutputBuffer=ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());interpreter.run(inputBuffer,outputBuffer);
4. עדכון קוד לטיפול בפלט
לבסוף, במקום לקבל את הפלט של המודל באמצעות השיטה FirebaseModelOutputs של האובייקט getOutput(), ממירים את הפלט ByteBuffer לכל מבנה שנוח לכם לשימוש בתרחיש לדוגמה.
לדוגמה, אם אתם מבצעים סיווג, יכול להיות שתבצעו שינויים כמו אלה:
לפני
Kotlin
valoutput=result.getOutput(0)valprobabilities=output[0]try{valreader=BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))for(probabilityinprobabilities){vallabel:String=reader.readLine()println("$label: $probability")}}catch(e:IOException){// File not found?}
Java
float[][]output=result.getOutput(0);float[]probabilities=output[0];try{BufferedReaderreader=newBufferedReader(newInputStreamReader(getAssets().open("custom_labels.txt")));for(floatprobability:probabilities){Stringlabel=reader.readLine();Log.i(TAG,String.format("%s: %1.4f",label,probability));}}catch(IOExceptione){// File not found?}
אחרי
Kotlin
modelOutput.rewind()valprobabilities=modelOutput.asFloatBuffer()try{valreader=BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))for(iinprobabilities.capacity()){vallabel:String=reader.readLine()valprobability=probabilities.get(i)println("$label: $probability")}}catch(e:IOException){// File not found?}
Java
modelOutput.rewind();FloatBufferprobabilities=modelOutput.asFloatBuffer();try{BufferedReaderreader=newBufferedReader(newInputStreamReader(getAssets().open("custom_labels.txt")));for(inti=0;i < probabilities.capacity();i++){Stringlabel=reader.readLine();floatprobability=probabilities.get(i);Log.i(TAG,String.format("%s: %1.4f",label,probability));}}catch(IOExceptione){// File not found?}
[[["התוכן קל להבנה","easyToUnderstand","thumb-up"],["התוכן עזר לי לפתור בעיה","solvedMyProblem","thumb-up"],["סיבה אחרת","otherUp","thumb-up"]],[["חסרים לי מידע או פרטים","missingTheInformationINeed","thumb-down"],["התוכן מורכב מדי או עם יותר מדי שלבים","tooComplicatedTooManySteps","thumb-down"],["התוכן לא עדכני","outOfDate","thumb-down"],["בעיה בתרגום","translationIssue","thumb-down"],["בעיה בדוגמאות/בקוד","samplesCodeIssue","thumb-down"],["סיבה אחרת","otherDown","thumb-down"]],["עדכון אחרון: 2025-09-06 (שעון UTC)."],[],[],null,["\u003cbr /\u003e\n\nVersion 22.0.2 of the `firebase-ml-model-interpreter` library introduces a new\n`getLatestModelFile()` method, which gets the location on the device of custom\nmodels. You can use this method to directly instantiate a TensorFlow Lite\n`Interpreter` object, which you can use instead of the\n`FirebaseModelInterpreter` wrapper.\n\nGoing forward, this is the preferred approach. Because the TensorFlow Lite\ninterpreter version is no longer coupled with the Firebase library version, you\nhave more flexibility to upgrade to new versions of TensorFlow Lite when you\nwant, or more easily use custom TensorFlow Lite builds.\n\nThis page shows how you can migrate from using `FirebaseModelInterpreter` to the\nTensorFlow Lite `Interpreter`.\n\n1. Update project dependencies\n\nUpdate your project's dependencies to include version 22.0.2 of the\n`firebase-ml-model-interpreter` library (or newer) and the `tensorflow-lite`\nlibrary:\n\nBefore \n\n implementation(\"com.google.firebase:firebase-ml-model-interpreter:22.0.1\")\n\nAfter \n\n implementation(\"com.google.firebase:firebase-ml-model-interpreter:22.0.2\")\n implementation(\"org.tensorflow:tensorflow-lite:2.0.0\")\n\n2. Create a TensorFlow Lite interpreter instead of a FirebaseModelInterpreter\n\nInstead of creating a `FirebaseModelInterpreter`, get the model's location on\ndevice with `getLatestModelFile()` and use it to create a TensorFlow Lite\n`Interpreter`.\n\nBefore \n\nKotlin \n\n val remoteModel = FirebaseCustomRemoteModel.Builder(\"your_model\").build()\n val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()\n val interpreter = FirebaseModelInterpreter.getInstance(options)\n\nJava \n\n FirebaseCustomRemoteModel remoteModel =\n new FirebaseCustomRemoteModel.Builder(\"your_model\").build();\n FirebaseModelInterpreterOptions options =\n new FirebaseModelInterpreterOptions.Builder(remoteModel).build();\n FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);\n\nAfter \n\nKotlin \n\n val remoteModel = FirebaseCustomRemoteModel.Builder(\"your_model\").build()\n FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)\n .addOnCompleteListener { task -\u003e\n val modelFile = task.getResult()\n if (modelFile != null) {\n // Instantiate an org.tensorflow.lite.Interpreter object.\n interpreter = Interpreter(modelFile)\n }\n }\n\nJava \n\n FirebaseCustomRemoteModel remoteModel =\n new FirebaseCustomRemoteModel.Builder(\"your_model\").build();\n FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)\n .addOnCompleteListener(new OnCompleteListener\u003cFile\u003e() {\n @Override\n public void onComplete(@NonNull Task\u003cFile\u003e task) {\n File modelFile = task.getResult();\n if (modelFile != null) {\n // Instantiate an org.tensorflow.lite.Interpreter object.\n Interpreter interpreter = new Interpreter(modelFile);\n }\n }\n });\n\n3. Update input and output preparation code\n\nWith `FirebaseModelInterpreter`, you specify the model's input and output shapes\nby passing a `FirebaseModelInputOutputOptions` object to the interpreter when\nyou run it.\n\nFor the TensorFlow Lite interpreter, you instead allocate `ByteBuffer` objects\nwith the right size for your model's input and output.\n\nFor example, if your model has an input shape of \\[1 224 224 3\\] `float` values\nand an output shape of \\[1 1000\\] `float` values, make these changes:\n\nBefore \n\nKotlin \n\n val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()\n .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))\n .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))\n .build()\n\n val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())\n // Then populate with input data.\n\n val inputs = FirebaseModelInputs.Builder()\n .add(input)\n .build()\n\n interpreter.run(inputs, inputOutputOptions)\n .addOnSuccessListener { outputs -\u003e\n // ...\n }\n .addOnFailureListener {\n // Task failed with an exception.\n // ...\n }\n\nJava \n\n FirebaseModelInputOutputOptions inputOutputOptions =\n new FirebaseModelInputOutputOptions.Builder()\n .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})\n .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})\n .build();\n\n float[][][][] input = new float[1][224][224][3];\n // Then populate with input data.\n\n FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()\n .add(input)\n .build();\n\n interpreter.run(inputs, inputOutputOptions)\n .addOnSuccessListener(\n new OnSuccessListener\u003cFirebaseModelOutputs\u003e() {\n @Override\n public void onSuccess(FirebaseModelOutputs result) {\n // ...\n }\n })\n .addOnFailureListener(\n new OnFailureListener() {\n @Override\n public void onFailure(@NonNull Exception e) {\n // Task failed with an exception\n // ...\n }\n });\n\nAfter \n\nKotlin \n\n val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE\n val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())\n // Then populate with input data.\n\n val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE\n val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())\n\n interpreter.run(inputBuffer, outputBuffer)\n\nJava \n\n int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;\n ByteBuffer inputBuffer =\n ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());\n // Then populate with input data.\n\n int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;\n ByteBuffer outputBuffer =\n ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());\n\n interpreter.run(inputBuffer, outputBuffer);\n\n4. Update output handling code\n\nFinally, instead of getting the model's output with the `FirebaseModelOutputs`\nobject's `getOutput()` method, convert the `ByteBuffer` output to whatever\nstructure is convenient for your use case.\n\nFor example, if you're doing classification, you might make changes like the\nfollowing:\n\nBefore \n\nKotlin \n\n val output = result.getOutput(0)\n val probabilities = output[0]\n try {\n val reader = BufferedReader(InputStreamReader(assets.open(\"custom_labels.txt\")))\n for (probability in probabilities) {\n val label: String = reader.readLine()\n println(\"$label: $probability\")\n }\n } catch (e: IOException) {\n // File not found?\n }\n\nJava \n\n float[][] output = result.getOutput(0);\n float[] probabilities = output[0];\n try {\n BufferedReader reader = new BufferedReader(\n new InputStreamReader(getAssets().open(\"custom_labels.txt\")));\n for (float probability : probabilities) {\n String label = reader.readLine();\n Log.i(TAG, String.format(\"%s: %1.4f\", label, probability));\n }\n } catch (IOException e) {\n // File not found?\n }\n\nAfter \n\nKotlin \n\n modelOutput.rewind()\n val probabilities = modelOutput.asFloatBuffer()\n try {\n val reader = BufferedReader(\n InputStreamReader(assets.open(\"custom_labels.txt\")))\n for (i in probabilities.capacity()) {\n val label: String = reader.readLine()\n val probability = probabilities.get(i)\n println(\"$label: $probability\")\n }\n } catch (e: IOException) {\n // File not found?\n }\n\nJava \n\n modelOutput.rewind();\n FloatBuffer probabilities = modelOutput.asFloatBuffer();\n try {\n BufferedReader reader = new BufferedReader(\n new InputStreamReader(getAssets().open(\"custom_labels.txt\")));\n for (int i = 0; i \u003c probabilities.capacity(); i++) {\n String label = reader.readLine();\n float probability = probabilities.get(i);\n Log.i(TAG, String.format(\"%s: %1.4f\", label, probability));\n }\n } catch (IOException e) {\n // File not found?\n }"]]