Migrar desde la API del modelo personalizado heredado

La versión 22.0.2 de la biblioteca firebase-ml-model-interpreter presenta un nuevo método getLatestModelFile() , que obtiene la ubicación en el dispositivo de los modelos personalizados. Puedes usar este método para crear una instancia directa de un objeto TensorFlow Lite Interpreter , que puedes usar en lugar del contenedor FirebaseModelInterpreter .

De cara al futuro, este es el enfoque preferido. Debido a que la versión del intérprete de TensorFlow Lite ya no está acoplada con la versión de la biblioteca de Firebase, tiene más flexibilidad para actualizar a nuevas versiones de TensorFlow Lite cuando lo desee, o usar más fácilmente compilaciones personalizadas de TensorFlow Lite.

Esta página muestra cómo puede migrar del uso de FirebaseModelInterpreter al Interpreter de TensorFlow Lite.

1. Actualizar las dependencias del proyecto.

Actualice las dependencias de su proyecto para incluir la versión 22.0.2 de la biblioteca firebase-ml-model-interpreter (o más reciente) y la biblioteca tensorflow-lite :

Antes

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")

Después

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")

2. Cree un intérprete de TensorFlow Lite en lugar de un FirebaseModelInterpreter

En lugar de crear un FirebaseModelInterpreter , obtén la ubicación del modelo en el dispositivo con getLatestModelFile() y úsalo para crear un TensorFlow Lite Interpreter .

Antes

Kotlin+KTX

val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)

Java

FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
        new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);

Después

Kotlin+KTX

val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
    .addOnCompleteListener { task ->
        val modelFile = task.getResult()
        if (modelFile != null) {
            // Instantiate an org.tensorflow.lite.Interpreter object.
            interpreter = Interpreter(modelFile)
        }
    }

Java

FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
        .addOnCompleteListener(new OnCompleteListener<File>() {
            @Override
            public void onComplete(@NonNull Task<File> task) {
                File modelFile = task.getResult();
                if (modelFile != null) {
                    // Instantiate an org.tensorflow.lite.Interpreter object.
                    Interpreter interpreter = new Interpreter(modelFile);
                }
            }
        });

3. Actualizar el código de preparación de entrada y salida.

Con FirebaseModelInterpreter , especificas las formas de entrada y salida del modelo pasando un objeto FirebaseModelInputOutputOptions al intérprete cuando lo ejecutas.

Para el intérprete de TensorFlow Lite, en su lugar asigna objetos ByteBuffer con el tamaño correcto para la entrada y salida de su modelo.

Por ejemplo, si su modelo tiene una forma de entrada de [1 224 224 3] valores float y una forma de salida de [1 1000] valores float , realice estos cambios:

Antes

Kotlin+KTX

val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
    .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
    .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
    .build()

val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.

val inputs = FirebaseModelInputs.Builder()
    .add(input)
    .build()

interpreter.run(inputs, inputOutputOptions)
    .addOnSuccessListener { outputs ->
        // ...
    }
    .addOnFailureListener {
        // Task failed with an exception.
        // ...
    }

Java

FirebaseModelInputOutputOptions inputOutputOptions =
        new FirebaseModelInputOutputOptions.Builder()
                .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
                .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
                .build();

float[][][][] input = new float[1][224][224][3];
// Then populate with input data.

FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
        .add(input)
        .build();

interpreter.run(inputs, inputOutputOptions)
        .addOnSuccessListener(
                new OnSuccessListener<FirebaseModelOutputs>() {
                    @Override
                    public void onSuccess(FirebaseModelOutputs result) {
                        // ...
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    public void onFailure(@NonNull Exception e) {
                        // Task failed with an exception
                        // ...
                    }
                });

Después

Kotlin+KTX

val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.

val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())

interpreter.run(inputBuffer, outputBuffer)

Java

int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
        ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.

int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
        ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());

interpreter.run(inputBuffer, outputBuffer);

4. Actualizar el código de manejo de salida

Finalmente, en lugar de obtener la salida del modelo con el método getOutput() del objeto FirebaseModelOutputs , convierta la salida ByteBuffer a cualquier estructura que sea conveniente para su caso de uso.

Por ejemplo, si está realizando una clasificación, puede realizar cambios como los siguientes:

Antes

Kotlin+KTX

val output = result.getOutput(0)
val probabilities = output[0]
try {
    val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
    for (probability in probabilities) {
        val label: String = reader.readLine()
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}

Java

float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
    BufferedReader reader = new BufferedReader(
          new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (float probability : probabilities) {
        String label = reader.readLine();
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}

Después

Kotlin+KTX

modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
    val reader = BufferedReader(
            InputStreamReader(assets.open("custom_labels.txt")))
    for (i in probabilities.capacity()) {
        val label: String = reader.readLine()
        val probability = probabilities.get(i)
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}

Java

modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
    BufferedReader reader = new BufferedReader(
            new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (int i = 0; i < probabilities.capacity(); i++) {
        String label = reader.readLine();
        float probability = probabilities.get(i);
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}