La version 22.0.2 de la bibliothèque firebase-ml-model-interpreter
introduit une nouvelle méthode getLatestModelFile()
, qui obtient l'emplacement des modèles personnalisés sur l'appareil. Vous pouvez utiliser cette méthode pour instancier directement un objet Interpreter
TensorFlow Lite, que vous pouvez utiliser à la place du wrapper FirebaseModelInterpreter
.
À l'avenir, il s'agira de l'approche privilégiée. Comme TensorFlow Lite n'est plus associée à la version de la bibliothèque Firebase, de passer à de nouvelles versions de TensorFlow Lite ou utiliser plus facilement des builds TensorFlow Lite personnalisés.
Cette page explique comment passer de FirebaseModelInterpreter
à la
TensorFlow Lite Interpreter
.
1. Mettre à jour les dépendances du projet
Mettez à jour les dépendances de votre projet pour inclure la version 22.0.2 de la bibliothèque firebase-ml-model-interpreter
(ou une version ultérieure) et la bibliothèque tensorflow-lite
:
Avant
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")
Après
implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")
2. Créer un interpréteur TensorFlow Lite au lieu d'un FirebaseModelInterpreter
Au lieu de créer un FirebaseModelInterpreter
, obtenez l'emplacement du modèle sur l'appareil avec getLatestModelFile()
et utilisez-le pour créer un Interpreter
TensorFlow Lite.
Avant
Kotlin+KTX
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);
Après
Kotlin+KTX
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener { task ->
val modelFile = task.getResult()
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
interpreter = Interpreter(modelFile)
}
}
Java
FirebaseCustomRemoteModel remoteModel =
new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
.addOnCompleteListener(new OnCompleteListener<File>() {
@Override
public void onComplete(@NonNull Task<File> task) {
File modelFile = task.getResult();
if (modelFile != null) {
// Instantiate an org.tensorflow.lite.Interpreter object.
Interpreter interpreter = new Interpreter(modelFile);
}
}
});
3. Mettre à jour le code de préparation des entrées et des sorties
Avec FirebaseModelInterpreter
, vous spécifiez les formes d'entrée et de sortie du modèle.
en transmettant un objet FirebaseModelInputOutputOptions
à l'interpréteur lorsque
vous l'exécutez.
Pour l'interpréteur TensorFlow Lite, vous allouez plutôt des objets ByteBuffer
de la taille appropriée pour l'entrée et la sortie de votre modèle.
Par exemple, si la forme d'entrée de votre modèle est [1 224 224 3] float
,
et une forme de sortie de [1 100] valeurs float
, apportez les modifications suivantes:
Avant
Kotlin+KTX
val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
.build()
val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.
val inputs = FirebaseModelInputs.Builder()
.add(input)
.build()
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener { outputs ->
// ...
}
.addOnFailureListener {
// Task failed with an exception.
// ...
}
Java
FirebaseModelInputOutputOptions inputOutputOptions =
new FirebaseModelInputOutputOptions.Builder()
.setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
.setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
.build();
float[][][][] input = new float[1][224][224][3];
// Then populate with input data.
FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
.add(input)
.build();
interpreter.run(inputs, inputOutputOptions)
.addOnSuccessListener(
new OnSuccessListener<FirebaseModelOutputs>() {
@Override
public void onSuccess(FirebaseModelOutputs result) {
// ...
}
})
.addOnFailureListener(
new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Après
Kotlin+KTX
val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.
val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())
interpreter.run(inputBuffer, outputBuffer)
Java
int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.
int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());
interpreter.run(inputBuffer, outputBuffer);
4. Mettre à jour le code de gestion des sorties
Enfin, au lieu d'obtenir la sortie du modèle avec FirebaseModelOutputs
la méthode getOutput()
de l'objet, convertissez la sortie ByteBuffer
au format
est pratique pour votre cas d'utilisation.
Par exemple, si vous faites une classification, vous pouvez apporter des modifications suivantes:
Avant
Kotlin+KTX
val output = result.getOutput(0)
val probabilities = output[0]
try {
val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
for (probability in probabilities) {
val label: String = reader.readLine()
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (float probability : probabilities) {
String label = reader.readLine();
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}
Après
Kotlin+KTX
modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
val reader = BufferedReader(
InputStreamReader(assets.open("custom_labels.txt")))
for (i in probabilities.capacity()) {
val label: String = reader.readLine()
val probability = probabilities.get(i)
println("$label: $probability")
}
} catch (e: IOException) {
// File not found?
}
Java
modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
BufferedReader reader = new BufferedReader(
new InputStreamReader(getAssets().open("custom_labels.txt")));
for (int i = 0; i < probabilities.capacity(); i++) {
String label = reader.readLine();
float probability = probabilities.get(i);
Log.i(TAG, String.format("%s: %1.4f", label, probability));
}
} catch (IOException e) {
// File not found?
}