लेगसी कस्टम मॉडल एपीआई से माइग्रेट करना

firebase-ml-model-interpreter लाइब्रेरी के 22.0.2 वर्शन में, getLatestModelFile() का एक नया तरीका पेश किया गया है. इसकी मदद से, कस्टम मॉडल के डिवाइस की जगह की जानकारी मिलती है. इस तरीके का इस्तेमाल करके, सीधे TensorFlow Lite Interpreter ऑब्जेक्ट को इंस्टैंशिएट किया जा सकता है. इसका इस्तेमाल, FirebaseModelInterpreter रैपर के बजाय किया जा सकता है.

आने वाले समय में, यह तरीका अपनाना बेहतर होगा. TensorFlow Lite के इंटरप्रेटर वर्शन को अब Firebase लाइब्रेरी के वर्शन के साथ जोड़ा नहीं गया है. इसलिए, अब जब चाहें, TensorFlow Lite के नए वर्शन पर अपग्रेड किया जा सकता है. इसके अलावा, कस्टम TensorFlow Lite बिल्ड का इस्तेमाल करना भी आसान हो गया है.

इस पेज पर बताया गया है कि FirebaseModelInterpreter का इस्तेमाल करने से, TensorFlow Lite Interpreter पर माइग्रेट कैसे किया जा सकता है.

1. प्रोजेक्ट डिपेंडेंसी अपडेट करना

अपने प्रोजेक्ट की डिपेंडेंसी को अपडेट करें, ताकि firebase-ml-model-interpreter लाइब्रेरी का 22.0.2 वर्शन (या इसके बाद का वर्शन) और tensorflow-lite लाइब्रेरी शामिल की जा सके:

इससे पहले

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.1")

इसके बाद

implementation("com.google.firebase:firebase-ml-model-interpreter:22.0.2")
implementation("org.tensorflow:tensorflow-lite:2.0.0")

2. FirebaseModelInterpreter के बजाय, TensorFlow Lite इंटरप्रेटर बनाएं

FirebaseModelInterpreter बनाने के बजाय, getLatestModelFile() का इस्तेमाल करके डिवाइस पर मॉडल की जगह का पता लगाएं और इसका इस्तेमाल करके TensorFlow Lite Interpreter बनाएं.

इससे पहले

KotlinJava
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()
val interpreter = FirebaseModelInterpreter.getInstance(options)
FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelInterpreterOptions options =
        new FirebaseModelInterpreterOptions.Builder(remoteModel).build();
FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);

इसके बाद

KotlinJava
val remoteModel = FirebaseCustomRemoteModel.Builder("your_model").build()
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
    .addOnCompleteListener { task ->
        val modelFile = task.getResult()
        if (modelFile != null) {
            // Instantiate an org.tensorflow.lite.Interpreter object.
            interpreter = Interpreter(modelFile)
        }
    }
FirebaseCustomRemoteModel remoteModel =
        new FirebaseCustomRemoteModel.Builder("your_model").build();
FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)
        .addOnCompleteListener(new OnCompleteListener<File>() {
            @Override
            public void onComplete(@NonNull Task<File> task) {
                File modelFile = task.getResult();
                if (modelFile != null) {
                    // Instantiate an org.tensorflow.lite.Interpreter object.
                    Interpreter interpreter = new Interpreter(modelFile);
                }
            }
        });

3. इनपुट और आउटपुट तैयार करने का कोड अपडेट करना

FirebaseModelInterpreter का इस्तेमाल करके, मॉडल के इनपुट और आउटपुट शेप तय किए जा सकते हैं. इसके लिए, इंटरप्रेटर को FirebaseModelInputOutputOptions ऑब्जेक्ट पास करें.

TensorFlow Lite इंटरप्रेटर के लिए, अपने मॉडल के इनपुट और आउटपुट के लिए सही साइज़ के ByteBuffer ऑब्जेक्ट को ऐलोकेट किया जाता है.

उदाहरण के लिए, अगर आपके मॉडल में इनपुट शेप [1 224 224 3] float वैल्यू और आउटपुट शेप [1 1000] float वैल्यू है, तो ये बदलाव करें:

इससे पहले

KotlinJava
val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()
    .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))
    .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))
    .build()

val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())
// Then populate with input data.

val inputs = FirebaseModelInputs.Builder()
    .add(input)
    .build()

interpreter.run(inputs, inputOutputOptions)
    .addOnSuccessListener { outputs ->
        // ...
    }
    .addOnFailureListener {
        // Task failed with an exception.
        // ...
    }
FirebaseModelInputOutputOptions inputOutputOptions =
        new FirebaseModelInputOutputOptions.Builder()
                .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})
                .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})
                .build();

float[][][][] input = new float[1][224][224][3];
// Then populate with input data.

FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()
        .add(input)
        .build();

interpreter.run(inputs, inputOutputOptions)
        .addOnSuccessListener(
                new OnSuccessListener<FirebaseModelOutputs>() {
                    @Override
                    public void onSuccess(FirebaseModelOutputs result) {
                        // ...
                    }
                })
        .addOnFailureListener(
                new OnFailureListener() {
                    @Override
                    public void onFailure(@NonNull Exception e) {
                        // Task failed with an exception
                        // ...
                    }
                });

इसके बाद

KotlinJava
val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())
// Then populate with input data.

val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE
val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())

interpreter.run(inputBuffer, outputBuffer)
int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer inputBuffer =
        ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());
// Then populate with input data.

int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;
ByteBuffer outputBuffer =
        ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());

interpreter.run(inputBuffer, outputBuffer);

4. आउटपुट को हैंडल करने वाला कोड अपडेट करना

आखिर में, FirebaseModelOutputs ऑब्जेक्ट के getOutput() तरीके से मॉडल का आउटपुट पाने के बजाय, ByteBuffer आउटपुट को अपने इस्तेमाल के उदाहरण के लिए सुविधाजनक स्ट्रक्चर में बदलें.

उदाहरण के लिए, अगर डेटा को अलग-अलग कैटगरी में बांटना है, तो इनमें बदलाव किए जा सकते हैं:

इससे पहले

KotlinJava
val output = result.getOutput(0)
val probabilities = output[0]
try {
    val reader = BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))
    for (probability in probabilities) {
        val label: String = reader.readLine()
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}
float[][] output = result.getOutput(0);
float[] probabilities = output[0];
try {
    BufferedReader reader = new BufferedReader(
          new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (float probability : probabilities) {
        String label = reader.readLine();
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}

इसके बाद

KotlinJava
modelOutput.rewind()
val probabilities = modelOutput.asFloatBuffer()
try {
    val reader = BufferedReader(
            InputStreamReader(assets.open("custom_labels.txt")))
    for (i in probabilities.capacity()) {
        val label: String = reader.readLine()
        val probability = probabilities.get(i)
        println("$label: $probability")
    }
} catch (e: IOException) {
    // File not found?
}
modelOutput.rewind();
FloatBuffer probabilities = modelOutput.asFloatBuffer();
try {
    BufferedReader reader = new BufferedReader(
            new InputStreamReader(getAssets().open("custom_labels.txt")));
    for (int i = 0; i < probabilities.capacity(); i++) {
        String label = reader.readLine();
        float probability = probabilities.get(i);
        Log.i(TAG, String.format("%s: %1.4f", label, probability));
    }
} catch (IOException e) {
    // File not found?
}