Nhận diện địa danh bằng công nghệ học máy của Firebase trên Android

Bạn có thể sử dụng Firebase ML để nhận dạng các địa danh nổi tiếng trong hình ảnh.

Trước khi bắt đầu

  1. Nếu bạn chưa thực hiện, hãy thêm Firebase vào dự án Android.
  2. Trong tệp Gradle mô-đun (cấp ứng dụng) (thường là <project>/<app-module>/build.gradle.kts hoặc <project>/<app-module>/build.gradle), hãy thêm phần phụ thuộc cho thư viện Vision Firebase ML dành cho Android. Bạn nên sử dụng Firebase Android BoM để kiểm soát việc tạo phiên bản thư viện.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.7.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Bằng cách sử dụng Firebase Android BoM, ứng dụng của bạn sẽ luôn sử dụng những phiên bản tương thích của thư viện Android trên Firebase.

    (Phương án thay thế)  Thêm phần phụ thuộc thư viện Firebase mà không sử dụng BoM

    Nếu chọn không sử dụng Firebase BoM, bạn phải chỉ định từng phiên bản thư viện Firebase trong dòng phần phụ thuộc của thư viện đó.

    Xin lưu ý rằng nếu bạn sử dụng nhiều thư viện Firebase trong ứng dụng, bạn nên sử dụng BoM để quản lý các phiên bản thư viện, nhằm đảm bảo rằng tất cả các phiên bản đều tương thích.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Bạn đang tìm một mô-đun thư viện dành riêng cho Kotlin? Kể từ tháng 10 năm 2023 (Firebase BoM 32.5.0), cả nhà phát triển Kotlin và Java đều có thể phụ thuộc vào mô-đun thư viện chính (để biết thông tin chi tiết, hãy xem Câu hỏi thường gặp về sáng kiến này).
  3. Nếu bạn chưa bật API dựa trên đám mây cho dự án của mình, hãy làm như sau:

    1. Mở trang API Firebase ML của bảng điều khiển Firebase.
    2. Nếu bạn chưa nâng cấp dự án lên gói giá Blaze, hãy nhấp vào Nâng cấp để thực hiện việc này. (Bạn sẽ chỉ được nhắc nâng cấp nếu dự án của bạn không sử dụng gói Blaze.)

      Chỉ các dự án cấp Blaze mới có thể sử dụng API dựa trên đám mây.

    3. Nếu bạn chưa bật API dựa trên đám mây, hãy nhấp vào Bật API dựa trên đám mây.

Định cấu hình trình phát hiện địa danh

Theo mặc định, trình phát hiện trên đám mây sử dụng phiên bản STABLE của mô hình và trả về tối đa 10 kết quả. Nếu bạn muốn thay đổi một trong hai chế độ cài đặt này, hãy chỉ định các chế độ cài đặt đó bằng đối tượng FirebaseVisionCloudDetectorOptions.

Ví dụ: để thay đổi cả hai chế độ cài đặt mặc định, hãy tạo một đối tượng FirebaseVisionCloudDetectorOptions như trong ví dụ sau:

Kotlin

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Để sử dụng chế độ cài đặt mặc định, bạn có thể sử dụng FirebaseVisionCloudDetectorOptions.DEFAULT ở bước tiếp theo.

Chạy trình phát hiện địa danh

Để nhận dạng các địa danh trong hình ảnh, hãy tạo đối tượng FirebaseVisionImage từ Bitmap, media.Image, ByteBuffer, mảng byte hoặc tệp trên thiết bị. Sau đó, hãy truyền đối tượng FirebaseVisionImage vào phương thức detectInImage của FirebaseVisionCloudLandmarkDetector.

  1. Tạo đối tượng FirebaseVisionImage từ hình ảnh của bạn.

    • Để tạo đối tượng FirebaseVisionImage từ đối tượng media.Image, chẳng hạn như khi chụp ảnh từ máy ảnh của thiết bị, hãy truyền đối tượng media.Image và độ xoay của hình ảnh đến FirebaseVisionImage.fromMediaImage().

      Nếu bạn sử dụng thư viện CameraX, các lớp OnImageCapturedListenerImageAnalysis.Analyzer sẽ tính toán giá trị xoay cho bạn, vì vậy, bạn chỉ cần chuyển đổi giá trị xoay thành một trong các hằng số ROTATION_ của Firebase ML trước khi gọi FirebaseVisionImage.fromMediaImage():

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      Nếu không sử dụng thư viện máy ảnh cung cấp độ xoay của hình ảnh, bạn có thể tính toán độ xoay đó từ độ xoay của thiết bị và hướng của cảm biến máy ảnh trong thiết bị:

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Sau đó, truyền đối tượng media.Image và giá trị xoay vào FirebaseVisionImage.fromMediaImage():

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Để tạo đối tượng FirebaseVisionImage từ URI tệp, hãy truyền ngữ cảnh ứng dụng và URI tệp đến FirebaseVisionImage.fromFilePath(). Điều này hữu ích khi bạn sử dụng ý định ACTION_GET_CONTENT để nhắc người dùng chọn một hình ảnh trong ứng dụng thư viện.

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Để tạo đối tượng FirebaseVisionImage từ ByteBuffer hoặc mảng byte, trước tiên, hãy tính toán độ xoay hình ảnh như mô tả ở trên cho dữ liệu đầu vào media.Image.

      Sau đó, hãy tạo một đối tượng FirebaseVisionImageMetadata chứa chiều cao, chiều rộng, định dạng mã hoá màu và độ xoay của hình ảnh:

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Sử dụng bộ đệm hoặc mảng và đối tượng siêu dữ liệu để tạo đối tượng FirebaseVisionImage:

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • Cách tạo đối tượng FirebaseVisionImage từ đối tượng Bitmap:

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Hình ảnh do đối tượng Bitmap biểu thị phải thẳng đứng, không cần xoay thêm.

  2. Tạo một thực thể của FirebaseVisionCloudLandmarkDetector:

    Kotlin

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. Cuối cùng, hãy truyền hình ảnh đến phương thức detectInImage:

    Kotlin

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

Nhận thông tin về các địa danh được nhận dạng

Nếu thao tác nhận dạng địa danh thành công, danh sách các đối tượng FirebaseVisionCloudLandmark sẽ được chuyển đến trình nghe thành công. Mỗi đối tượng FirebaseVisionCloudLandmark đại diện cho một địa danh được nhận dạng trong hình ảnh. Đối với mỗi địa danh, bạn có thể lấy toạ độ giới hạn của địa danh đó trong hình ảnh đầu vào, tên địa danh, vĩ độ và kinh độ, mã nhận dạng thực thể trong Sơ đồ tri thức (nếu có) và điểm số tin cậy của kết quả so khớp. Ví dụ:

Kotlin

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Các bước tiếp theo