จดจำจุดสังเกตได้อย่างปลอดภัยด้วย Cloud Vision โดยใช้การตรวจสอบสิทธิ์และฟังก์ชันของ Firebase บน Android

หากต้องการเรียกใช้ Google Cloud API จากแอปของคุณ คุณต้องสร้างสื่อกลาง REST API ที่จัดการการให้สิทธิ์และปกป้องค่าข้อมูลลับ เช่น คีย์ API จากนั้นคุณต้อง เขียนโค้ดในแอปบนอุปกรณ์เคลื่อนที่เพื่อตรวจสอบสิทธิ์และสื่อสารกับบริการระดับกลางนี้

วิธีหนึ่งในการสร้าง REST API นี้คือการใช้การตรวจสอบสิทธิ์และฟังก์ชันของ Firebase ซึ่งช่วยให้คุณมีเกตเวย์แบบ Serverless ที่มีการจัดการไปยัง Google Cloud APIs ที่จัดการการตรวจสอบสิทธิ์และสามารถเรียกใช้จากแอปบนอุปกรณ์เคลื่อนที่ด้วย SDK ที่สร้างไว้ล่วงหน้า

คู่มือนี้จะสาธิตวิธีใช้เทคนิคนี้เพื่อเรียก Cloud Vision API จากแอปของคุณ วิธีนี้จะอนุญาตให้ผู้ใช้ที่ผ่านการตรวจสอบสิทธิ์แล้วทั้งหมดเข้าถึงบริการที่เรียกเก็บเงินสำหรับ Cloud Vision ผ่านโปรเจ็กต์ระบบคลาวด์ได้ ดังนั้น ให้พิจารณาว่ากลไกการตรวจสอบสิทธิ์นี้เพียงพอสำหรับกรณีการใช้งานของคุณหรือไม่ก่อนที่จะดำเนินการต่อ

ก่อนเริ่มต้น

กำหนดค่าโปรเจ็กต์

  1. หากคุณยังไม่ได้ดำเนินการ เพิ่ม Firebase ลงในโปรเจ็กต์ Android
  2. หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์สำหรับโปรเจ็กต์ของคุณ ให้เปิดใช้ ในขณะนี้:

    1. เปิดFirebase ML หน้า API ของคอนโซล Firebase
    2. หากคุณยังไม่ได้อัปเกรดโปรเจ็กต์เป็นแพ็กเกจราคา Blaze ให้คลิก โปรดอัปเกรดเพื่อดำเนินการ (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะในกรณีต่อไปนี้ ไม่ได้อยู่ในแพ็กเกจ Blaze)

      เฉพาะโปรเจ็กต์ระดับ Blaze เท่านั้นที่ใช้ API ในระบบคลาวด์ได้

    3. หากยังไม่ได้เปิดใช้ API ในระบบคลาวด์ ให้คลิกเปิดใช้ในระบบคลาวด์ API
    วันที่
  3. กำหนดค่าคีย์ Firebase API ที่มีอยู่เพื่อไม่ให้อนุญาตการเข้าถึงระบบคลาวด์ API ของ Vision
    1. เปิดหน้าข้อมูลเข้าสู่ระบบของ Cloud Console
    2. สำหรับคีย์ API แต่ละรายการในรายการ ให้เปิดมุมมองการแก้ไข และใน ส่วนข้อจำกัด ให้เพิ่ม API ที่มีอยู่ทั้งหมด ยกเว้น Cloud Vision API ลงในรายการ

ทำให้ฟังก์ชันที่เรียกใช้ได้ใช้งานได้

ถัดไป ให้ติดตั้งใช้งาน Cloud Function เพื่อเชื่อมโยงแอปและระบบคลาวด์ Vision API ที่เก็บ functions-samples มีตัวอย่าง ที่ใช้ได้

โดยค่าเริ่มต้น การเข้าถึง Cloud Vision API ผ่านฟังก์ชันนี้จะอนุญาตให้ เฉพาะผู้ใช้ที่ผ่านการตรวจสอบสิทธิ์ของแอปเท่านั้นที่เข้าถึง Cloud Vision API ได้ คุณสามารถ แก้ไขฟังก์ชันสำหรับข้อกำหนดที่แตกต่างกัน

วิธีทำให้ฟังก์ชันใช้งานได้

  1. โคลนหรือดาวน์โหลดที่เก็บฟังก์ชันตัวอย่าง และเปลี่ยนเป็นไดเรกทอรี Node-1st-gen/vision-annotate-image:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. ติดตั้งการอ้างอิง:
    cd functions
    npm install
    cd ..
    
  3. หากคุณไม่มี Firebase CLI ให้ติดตั้ง
  4. เริ่มต้นโปรเจ็กต์ Firebase ใน vision-annotate-image ไดเรกทอรี เมื่อได้รับข้อความแจ้ง ให้เลือกโปรเจ็กต์ในรายการ
    firebase init
  5. ทำให้ฟังก์ชันใช้งานได้:
    firebase deploy --only functions:annotateImage

เพิ่ม Firebase Auth ลงในแอป

ฟังก์ชันที่เรียกใช้ได้ที่ใช้งานด้านบนจะปฏิเสธคำขอทั้งหมดจากผู้ใช้ที่ไม่ได้ตรวจสอบสิทธิ์ ผู้ใช้แอปของคุณ คุณจะต้องเพิ่ม Firebase หากยังไม่ได้เพิ่ม ตรวจสอบสิทธิ์แอปของคุณ

เพิ่มทรัพยากร Dependency ที่จำเป็นลงในแอป

  • เพิ่มทรัพยากร Dependency สำหรับ Cloud Functions สำหรับไลบรารี Android (ไคลเอ็นต์) และ Gson Android ไปยังไฟล์ Gradle ของโมดูล (ระดับแอป) (ปกติ <project>/<app-module>/build.gradle.kts หรือ <project>/<app-module>/build.gradle)
    implementation("com.google.firebase:firebase-functions:21.1.0")
    implementation("com.google.code.gson:gson:2.8.6")
  • 1. เตรียมรูปภาพอินพุต

    หากต้องการเรียกใช้ Cloud Vision รูปภาพต้องอยู่ในรูปแบบสตริงที่เข้ารหัสแบบ Base64 วิธีประมวลผล รูปภาพจาก URI ของไฟล์ที่บันทึกไว้:
    1. โหลดรูปภาพเป็นออบเจ็กต์ Bitmap ดังนี้

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
      

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
    2. (ไม่บังคับ) ลดขนาดรูปภาพเพื่อประหยัดแบนด์วิดท์ โปรดดู ขนาดรูปภาพที่แนะนำสำหรับ Cloud Vision

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                  (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                  (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);
    3. แปลงออบเจ็กต์บิตแมปเป็นสตริงที่เข้ารหัส base64 ดังนี้

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
    4. รูปภาพที่แสดงโดยออบเจ็กต์ Bitmap ต้อง ให้ตั้งตรงโดยไม่ต้องมีการหมุนเพิ่มเติม

    2. เรียกใช้ฟังก์ชันที่เรียกใช้ได้เพื่อจดจำจุดสังเกต

    หากต้องการจดจำจุดสังเกตในรูปภาพ ให้เรียกใช้ฟังก์ชันที่เรียกใช้ได้และส่ง คำขอ JSON Cloud Vision

    1. ก่อนอื่น ให้เริ่มต้นอินสแตนซ์ของ Cloud Functions โดยทำดังนี้

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      
    2. กำหนดเมธอดสำหรับการเรียกฟังก์ชัน

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
              .getHttpsCallable("annotateImage")
              .call(requestJson)
              .continueWith { task ->
                  // This continuation runs on either success or failure, but if the task
                  // has failed then result will throw an Exception which will be
                  // propagated down.
                  val result = task.result?.data
                  JsonParser.parseString(Gson().toJson(result))
              }
      }
      

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      
    3. สร้างคำขอ JSON ด้วย Type LANDMARK_DETECTION:

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      // Add features to the request
      val feature = JsonObject()
      feature.add("maxResults", JsonPrimitive(5))
      feature.add("type", JsonPrimitive("LANDMARK_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("maxResults", new JsonPrimitive(5));
      feature.add("type", new JsonPrimitive("LANDMARK_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      
    4. สุดท้าย เรียกใช้ฟังก์ชัน

      Kotlin+KTX

      annotateImage(request.toString())
          .addOnCompleteListener { task ->
              if (!task.isSuccessful) {
                  // Task failed with an exception
                  // ...
              } else {
                  // Task completed successfully
                  // ...
              }
          }
      

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

    3. รับข้อมูลเกี่ยวกับจุดสังเกตที่ระบบรู้จัก

    หากการดำเนินการจดจำจุดสังเกตดำเนินการสำเร็จ การตอบสนอง JSON ของ BatchAnnotateImagesResponse จะแสดงในผลลัพธ์ของงาน แต่ละออบเจ็กต์ใน landmarkAnnotations อาร์เรย์แสดงจุดสังเกตที่เป็นที่รู้จักในภาพ สำหรับจุดสังเกตแต่ละรายการ คุณจะเห็นพิกัดขอบเขตของจุดในรูปภาพอินพุต ชื่อจุดสังเกต ละติจูดและลองจิจูด รหัสเอนทิตีของกราฟความรู้ (หากมี) และ คะแนนความเชื่อมั่นของการแข่งขัน เช่น

    Kotlin+KTX

    for (label in task.result!!.asJsonArray[0].asJsonObject["landmarkAnnotations"].asJsonArray) {
        val labelObj = label.asJsonObject
        val landmarkName = labelObj["description"]
        val entityId = labelObj["mid"]
        val score = labelObj["score"]
        val bounds = labelObj["boundingPoly"]
        // Multiple locations are possible, e.g., the location of the depicted
        // landmark and the location the picture was taken.
        for (loc in labelObj["locations"].asJsonArray) {
            val latitude = loc.asJsonObject["latLng"].asJsonObject["latitude"]
            val longitude = loc.asJsonObject["latLng"].asJsonObject["longitude"]
        }
    }
    

    Java

    for (JsonElement label : task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("landmarkAnnotations").getAsJsonArray()) {
        JsonObject labelObj = label.getAsJsonObject();
        String landmarkName = labelObj.get("description").getAsString();
        String entityId = labelObj.get("mid").getAsString();
        float score = labelObj.get("score").getAsFloat();
        JsonObject bounds = labelObj.get("boundingPoly").getAsJsonObject();
        // Multiple locations are possible, e.g., the location of the depicted
        // landmark and the location the picture was taken.
        for (JsonElement loc : labelObj.get("locations").getAsJsonArray()) {
            JsonObject latLng = loc.getAsJsonObject().get("latLng").getAsJsonObject();
            double latitude = latLng.get("latitude").getAsDouble();
            double longitude = latLng.get("longitude").getAsDouble();
        }
    }