Nhận dạng địa danh một cách an toàn bằng Tầm nhìn đám mây bằng tính năng Xác thực và các hàm trong Firebase trên Android

Để gọi Google Cloud API từ ứng dụng, bạn cần tạo một trình xử lý trung gian API REST xử lý việc uỷ quyền và bảo vệ các giá trị bí mật, chẳng hạn như khoá API. Sau đó, bạn cần viết mã trong ứng dụng di động của bạn để xác thực và giao tiếp với dịch vụ trung gian này.

Một cách để tạo API REST này là sử dụng tính năng Xác thực và Hàm Firebase. Giải pháp này cung cấp cho bạn một cổng vào được quản lý, không cần máy chủ để Google Cloud API xử lý việc xác thực và có thể được gọi từ ứng dụng di động của bạn bằng các SDK dựng sẵn.

Hướng dẫn này minh hoạ cách dùng kỹ thuật này để gọi API Cloud Vision qua ứng dụng của bạn. Phương thức này sẽ cho phép tất cả người dùng đã xác thực sử dụng các dịch vụ có tính phí của Cloud Vision thông qua dự án Cloud của bạn, vì vậy, hãy cân nhắc xem cơ chế xác thực này có đủ cho trường hợp sử dụng của bạn hay không trước khi tiếp tục.

Trước khi bắt đầu

Định cấu hình dự án

  1. Nếu bạn chưa làm như vậy, thêm Firebase vào dự án Android của bạn.
  2. Nếu bạn chưa bật API trên đám mây cho dự án của mình, hãy bật bây giờ:

    1. Mở Firebase ML trang API của bảng điều khiển Firebase.
    2. Nếu bạn chưa nâng cấp dự án của mình lên Gói giá linh hoạt, hãy nhấp vào Hãy nâng cấp để làm điều này. (Bạn sẽ chỉ được nhắc nâng cấp nếu không có trong Kế hoạch linh hoạt.)

      Chỉ các dự án cấp Blaze mới có thể sử dụng API trên đám mây.

    3. Nếu bạn chưa bật API trên đám mây, hãy nhấp vào Bật API dựa trên đám mây API.
  3. Định cấu hình các khoá API Firebase hiện có để không cho phép truy cập vào Đám mây API Vision:
    1. Mở trang Thông tin đăng nhập của bảng điều khiển Cloud.
    2. Đối với mỗi khoá API trong danh sách, hãy mở chế độ xem chỉnh sửa và Phần Hạn chế, hãy thêm tất cả API hiện có, ngoại trừ Cloud Vision API vào danh sách.

Triển khai hàm có thể gọi

Tiếp theo, hãy triển khai Chức năng đám mây mà bạn sẽ dùng để làm cầu nối cho ứng dụng của mình và đám mây Vision API. Kho lưu trữ functions-samples có chứa một ví dụ mà bạn có thể sử dụng.

Theo mặc định, việc truy cập Cloud Vision API thông qua chức năng này sẽ cho phép chỉ những người dùng đã xác thực trong ứng dụng của bạn mới có quyền truy cập vào Cloud Vision API. Bạn có thể sửa đổi hàm theo các yêu cầu khác nhau.

Cách triển khai hàm:

  1. Sao chép hoặc tải kho lưu trữ hàm-mẫu xuống và thay đổi thành thư mục Node-1st-gen/vision-annotate-image:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. Cài đặt phần phụ thuộc:
    cd functions
    npm install
    cd ..
    
  3. Nếu bạn chưa có Giao diện dòng lệnh (CLI) của Firebase, hãy cài đặt giao diện này.
  4. Khởi chạy dự án Firebase trong vision-annotate-image thư mục. Khi được nhắc, hãy chọn dự án của bạn trong danh sách.
    firebase init
  5. Triển khai hàm:
    firebase deploy --only functions:annotateImage

Thêm tính năng Xác thực Firebase vào ứng dụng

Hàm có thể gọi được triển khai ở trên sẽ từ chối mọi yêu cầu từ trạng thái chưa được xác thực người dùng ứng dụng của bạn. Bạn cần thêm Firebase nếu chưa làm như vậy Xác thực ứng dụng.

Thêm các phần phụ thuộc cần thiết vào ứng dụng

  • Thêm các phần phụ thuộc cho thư viện Cloud Functions cho Firebase (ứng dụng) và gson vào tệp Gradle mô-đun (cấp ứng dụng) (thường là <project>/<app-module>/build.gradle.kts hoặc <project>/<app-module>/build.gradle):
    implementation("com.google.firebase:firebase-functions:21.1.0")
    implementation("com.google.code.gson:gson:2.8.6")
  • 1. Chuẩn bị hình ảnh đầu vào

    Để gọi Cloud Vision, hình ảnh phải được định dạng dưới dạng một chuỗi được mã hoá base64. Để xử lý một hình ảnh từ URI tệp đã lưu:
    1. Lấy hình ảnh dưới dạng đối tượng Bitmap:

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
      

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
    2. Nếu muốn, hãy giảm kích thước hình ảnh để tiết kiệm băng thông. Hãy xem Kích thước hình ảnh được đề xuất của Cloud Vision.

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                  (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                  (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);
    3. Chuyển đổi đối tượng bitmap thành một chuỗi được mã hoá base64:

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
    4. Hình ảnh mà đối tượng Bitmap đại diện phải thẳng đứng mà không cần xoay thêm.

    2. Gọi hàm có thể gọi để nhận dạng các mốc

    Để nhận dạng các địa danh trong một hình ảnh, hãy gọi hàm có thể gọi, truyền một Yêu cầu JSON Cloud Vision.

    1. Trước tiên, hãy khởi chạy một bản sao của Cloud Functions:

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      
    2. Xác định phương thức gọi hàm:

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
              .getHttpsCallable("annotateImage")
              .call(requestJson)
              .continueWith { task ->
                  // This continuation runs on either success or failure, but if the task
                  // has failed then result will throw an Exception which will be
                  // propagated down.
                  val result = task.result?.data
                  JsonParser.parseString(Gson().toJson(result))
              }
      }
      

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      
    3. Tạo yêu cầu JSON bằng Type (Loại) LANDMARK_DETECTION:

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      // Add features to the request
      val feature = JsonObject()
      feature.add("maxResults", JsonPrimitive(5))
      feature.add("type", JsonPrimitive("LANDMARK_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("maxResults", new JsonPrimitive(5));
      feature.add("type", new JsonPrimitive("LANDMARK_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      
    4. Cuối cùng, hãy gọi hàm này:

      Kotlin+KTX

      annotateImage(request.toString())
          .addOnCompleteListener { task ->
              if (!task.isSuccessful) {
                  // Task failed with an exception
                  // ...
              } else {
                  // Task completed successfully
                  // ...
              }
          }
      

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

    3. Xem thông tin về các địa danh được công nhận

    Nếu thao tác nhận dạng mốc thành công, phản hồi JSON của BatchAnnotationImagesResponse sẽ được trả về trong kết quả của tác vụ. Từng đối tượng trong landmarkAnnotations đại diện cho một mốc được nhận dạng trong hình ảnh. Đối với mỗi mốc, bạn có thể lấy toạ độ giới hạn trong hình ảnh đầu vào, tên của mốc, vĩ độ và kinh độ, mã nhận dạng thực thể trong Sơ đồ tri thức (nếu có) và điểm số tin cậy của kết quả trùng khớp. Ví dụ:

    Kotlin+KTX

    for (label in task.result!!.asJsonArray[0].asJsonObject["landmarkAnnotations"].asJsonArray) {
        val labelObj = label.asJsonObject
        val landmarkName = labelObj["description"]
        val entityId = labelObj["mid"]
        val score = labelObj["score"]
        val bounds = labelObj["boundingPoly"]
        // Multiple locations are possible, e.g., the location of the depicted
        // landmark and the location the picture was taken.
        for (loc in labelObj["locations"].asJsonArray) {
            val latitude = loc.asJsonObject["latLng"].asJsonObject["latitude"]
            val longitude = loc.asJsonObject["latLng"].asJsonObject["longitude"]
        }
    }
    

    Java

    for (JsonElement label : task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("landmarkAnnotations").getAsJsonArray()) {
        JsonObject labelObj = label.getAsJsonObject();
        String landmarkName = labelObj.get("description").getAsString();
        String entityId = labelObj.get("mid").getAsString();
        float score = labelObj.get("score").getAsFloat();
        JsonObject bounds = labelObj.get("boundingPoly").getAsJsonObject();
        // Multiple locations are possible, e.g., the location of the depicted
        // landmark and the location the picture was taken.
        for (JsonElement loc : labelObj.get("locations").getAsJsonArray()) {
            JsonObject latLng = loc.getAsJsonObject().get("latLng").getAsJsonObject();
            double latitude = latLng.get("latitude").getAsDouble();
            double longitude = latLng.get("longitude").getAsDouble();
        }
    }