Uygulamanızdan bir Google Cloud API'yi çağırmak için yetkilendirmeyi yapan ve API anahtarları gibi gizli değerleri koruyan bir ara REST API oluşturmanız gerekir. Ardından, bu ara hizmette kimlik doğrulaması yapmak ve bu hizmetle iletişim kurmak için mobil uygulamanızda kod yazmanız gerekir.
Bu REST API'yi oluşturmanın bir yolu Firebase Authentication ve Functions'ı kullanmaktır. Bu yöntem, kimlik doğrulamayı yöneten ve önceden oluşturulmuş SDK'larla mobil uygulamanızdan çağrılabilecek Google Cloud API'leri için yönetilen, sunucusuz bir ağ geçidi sağlar.
Bu kılavuzda, uygulamanızdan Cloud Vision API'yi çağırmak için bu tekniğin nasıl kullanılacağı gösterilmektedir. Bu yöntem, kimliği doğrulanmış tüm kullanıcıların Cloud projeniz aracılığıyla Cloud Vision'un faturalandırılan hizmetlerine erişmesine olanak tanır. Bu nedenle, devam etmeden önce bu kimlik doğrulama mekanizmasının kullanım alanınız için yeterli olup olmadığını düşünün.
Başlamadan önce
Projenizi yapılandırın
- Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
-
Projeniz için bulut tabanlı API'leri henüz etkinleştirmediyseniz şimdi etkinleştirin:
- Firebase konsolunun Firebase ML API'leri sayfasını açın.
-
Projenizi Blaze fiyatlandırma planına henüz yükseltmediyseniz bunu yapmak için Yükselt'i tıklayın. (Yükseltme işlemini yalnızca projeniz Blaze planında değilse yapmanız istenir.)
Cloud tabanlı API'ler yalnızca Blaze düzeyindeki projelerde kullanılabilir.
- Bulut tabanlı API'ler etkinleştirilmemişse Bulut tabanlı API'leri etkinleştir'i tıklayın.
- Mevcut Firebase API anahtarlarınızı Cloud Vision API'ye erişime izin vermeyecek şekilde yapılandırın:
- Cloud Console'un Kimlik bilgileri sayfasını açın.
- Listedeki her API anahtarı için düzenleme görünümünü açın ve Anahtar Kısıtlamaları bölümünde, Cloud Vision API'si hariç mevcut API'lerin tümünü listeye ekleyin.
Çağırılabilir işlevi dağıtma
Ardından, uygulamanız ile Cloud Vision API arasında köprü oluşturmak için kullanacağınız Cloud Functions işlevini dağıtın. functions-samples
deposunda kullanabileceğiniz bir örnek bulunmaktadır.
Varsayılan olarak, bu işlev aracılığıyla Cloud Vision API'ye erişmek yalnızca uygulamanızda kimliği doğrulanmış kullanıcıların Cloud Vision API'ye erişmesine olanak tanır. İşlevi farklı gereksinimlere göre değiştirebilirsiniz.
İşlevi dağıtmak için:
- functions-samples deposunu klonlayın veya indirin ve
Node-1st-gen/vision-annotate-image
dizinine geçin:git clone https://github.com/firebase/functions-samples
cd Node-1st-gen/vision-annotate-image
- Bağımlılıkları yükleyin:
cd functions
npm install
cd ..
- Firebase CLI'niz yoksa yükleyin.
vision-annotate-image
dizininde bir Firebase projesini başlatın. İstendiğinde listeden projenizi seçin.firebase init
- İşlevi dağıtın:
firebase deploy --only functions:annotateImage
Firebase Auth'u uygulamanıza ekleme
Yukarıda dağıtılan çağrılabilir işlev, uygulamanızın kimliği doğrulanmamış kullanıcılarından gelen tüm istekleri reddeder. Henüz yapmadıysanız Firebase Auth'u uygulamanıza eklemeniz gerekir.
Uygulamanıza gerekli bağımlılıkları ekleme
<project>/<app-module>/build.gradle.kts
veya <project>/<app-module>/build.gradle
) Firebase için Cloud Functions (istemci) ve gson Android kitaplıklarının bağımlılıklarını ekleyin:
implementation("com.google.firebase:firebase-functions:21.1.0") implementation("com.google.code.gson:gson:2.8.6")
1. Giriş resmini hazırlama
Cloud Vision'u çağırmak için görüntünün base64 kodlu bir dize olarak biçimlendirilmesi gerekir. Kayıtlı bir dosya URI'sinden resim işlemek için:- Resmi
Bitmap
nesnesi olarak alın:Kotlin
var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
Java
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
- İsteğe bağlı olarak, bant genişliğinden tasarruf etmek için resmi küçültebilirsiniz.
Cloud Vision tarafından önerilen resim boyutlarına göz atın.
Kotlin
private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap { val originalWidth = bitmap.width val originalHeight = bitmap.height var resizedWidth = maxDimension var resizedHeight = maxDimension if (originalHeight > originalWidth) { resizedHeight = maxDimension resizedWidth = (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt() } else if (originalWidth > originalHeight) { resizedWidth = maxDimension resizedHeight = (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt() } else if (originalHeight == originalWidth) { resizedHeight = maxDimension resizedWidth = maxDimension } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false) }
Java
private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) { int originalWidth = bitmap.getWidth(); int originalHeight = bitmap.getHeight(); int resizedWidth = maxDimension; int resizedHeight = maxDimension; if (originalHeight > originalWidth) { resizedHeight = maxDimension; resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight); } else if (originalWidth > originalHeight) { resizedWidth = maxDimension; resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth); } else if (originalHeight == originalWidth) { resizedHeight = maxDimension; resizedWidth = maxDimension; } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false); }
Kotlin
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640)
Java
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640);
- Bit eşleme nesnesini base64 kodlu bir dizeye dönüştürün:
Kotlin
// Convert bitmap to base64 encoded string val byteArrayOutputStream = ByteArrayOutputStream() bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream) val imageBytes: ByteArray = byteArrayOutputStream.toByteArray() val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
Java
// Convert bitmap to base64 encoded string ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream); byte[] imageBytes = byteArrayOutputStream.toByteArray(); String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
Bitmap
nesnesi tarafından temsil edilen resim dik olmalıdır, ek döndürme işlemi gerekmez.
2. Önemli noktaları tanımak için çağrılabilir işlevi çağırma
Bir resimdeki yer işaretlerini tanımak için JSON Cloud Vision isteği göndererek çağrılabilir işlevi çağırın.Öncelikle bir Cloud Functions örneğini başlatın:
Kotlin
private lateinit var functions: FirebaseFunctions // ... functions = Firebase.functions
Java
private FirebaseFunctions mFunctions; // ... mFunctions = FirebaseFunctions.getInstance();
İşlevi çağırma yöntemini tanımlayın:
Kotlin
private fun annotateImage(requestJson: String): Task<JsonElement> { return functions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith { task -> // This continuation runs on either success or failure, but if the task // has failed then result will throw an Exception which will be // propagated down. val result = task.result?.data JsonParser.parseString(Gson().toJson(result)) } }
Java
private Task<JsonElement> annotateImage(String requestJson) { return mFunctions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith(new Continuation<HttpsCallableResult, JsonElement>() { @Override public JsonElement then(@NonNull Task<HttpsCallableResult> task) { // This continuation runs on either success or failure, but if the task // has failed then getResult() will throw an Exception which will be // propagated down. return JsonParser.parseString(new Gson().toJson(task.getResult().getData())); } }); }
Type ile JSON isteği oluşturun
LANDMARK_DETECTION
:Kotlin
// Create json request to cloud vision val request = JsonObject() // Add image to request val image = JsonObject() image.add("content", JsonPrimitive(base64encoded)) request.add("image", image) // Add features to the request val feature = JsonObject() feature.add("maxResults", JsonPrimitive(5)) feature.add("type", JsonPrimitive("LANDMARK_DETECTION")) val features = JsonArray() features.add(feature) request.add("features", features)
Java
// Create json request to cloud vision JsonObject request = new JsonObject(); // Add image to request JsonObject image = new JsonObject(); image.add("content", new JsonPrimitive(base64encoded)); request.add("image", image); //Add features to the request JsonObject feature = new JsonObject(); feature.add("maxResults", new JsonPrimitive(5)); feature.add("type", new JsonPrimitive("LANDMARK_DETECTION")); JsonArray features = new JsonArray(); features.add(feature); request.add("features", features);
Son olarak işlevi çağırın:
Kotlin
annotateImage(request.toString()) .addOnCompleteListener { task -> if (!task.isSuccessful) { // Task failed with an exception // ... } else { // Task completed successfully // ... } }
Java
annotateImage(request.toString()) .addOnCompleteListener(new OnCompleteListener<JsonElement>() { @Override public void onComplete(@NonNull Task<JsonElement> task) { if (!task.isSuccessful()) { // Task failed with an exception // ... } else { // Task completed successfully // ... } } });
3. Tanınan önemli yerler hakkında bilgi edinme
Yer işareti tanıma işlemi başarılı olursa görev sonucunda BatchAnnotateImagesResponse biçiminde bir JSON yanıtı döndürülür.landmarkAnnotations
dizisindeki her nesne, resimde tanınan bir yer işaretini temsil eder. Her bir yer işareti için giriş resmindeki sınırlayıcı koordinatlarını, yer işaretinin adını, enlem ve boylamını, Bilgi Grafiği varlık kimliğini (varsa) ve eşleşmenin güven puanını alabilirsiniz. Örneğin:
Kotlin
for (label in task.result!!.asJsonArray[0].asJsonObject["landmarkAnnotations"].asJsonArray) {
val labelObj = label.asJsonObject
val landmarkName = labelObj["description"]
val entityId = labelObj["mid"]
val score = labelObj["score"]
val bounds = labelObj["boundingPoly"]
// Multiple locations are possible, e.g., the location of the depicted
// landmark and the location the picture was taken.
for (loc in labelObj["locations"].asJsonArray) {
val latitude = loc.asJsonObject["latLng"].asJsonObject["latitude"]
val longitude = loc.asJsonObject["latLng"].asJsonObject["longitude"]
}
}
Java
for (JsonElement label : task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("landmarkAnnotations").getAsJsonArray()) {
JsonObject labelObj = label.getAsJsonObject();
String landmarkName = labelObj.get("description").getAsString();
String entityId = labelObj.get("mid").getAsString();
float score = labelObj.get("score").getAsFloat();
JsonObject bounds = labelObj.get("boundingPoly").getAsJsonObject();
// Multiple locations are possible, e.g., the location of the depicted
// landmark and the location the picture was taken.
for (JsonElement loc : labelObj.get("locations").getAsJsonArray()) {
JsonObject latLng = loc.getAsJsonObject().get("latLng").getAsJsonObject();
double latitude = latLng.get("latitude").getAsDouble();
double longitude = latLng.get("longitude").getAsDouble();
}
}