التعرّف على النص في "صور Google" باستخدام تعلُّم الآلة في Firebase على نظام Android

يمكنك استخدام Firebase ML للتعرّف على النص في الصور. تتضمّن Firebase ML واجهة برمجة تطبيقات مخصّصة للأغراض العامة مناسبة للتعرّف على النص في الصور، مثل نص لافتة شارع، وواجهة برمجة تطبيقات محسّنة للتعرّف على نص المستندات.

قبل البدء

  1. أضِف Firebase إلى مشروع Android، في حال لم يسبق لك إجراء ذلك.
  2. في ملف Gradle للوحدة (على مستوى التطبيق) (عادةً <project>/<app-module>/build.gradle.kts أو <project>/<app-module>/build.gradle)، أضِف الاعتمادية لمكتبة Firebase ML Vision لنظام التشغيل Android. ننصحك باستخدام الرمز Firebase Android BoM للتحكّم في إصدارات المكتبة.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.7.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    باستخدام Firebase Android BoM، سيستخدم تطبيقك دائمًا إصدارات متوافقة من مكتبات Firebase لنظام التشغيل Android.

    (بديل)  إضافة تبعيات مكتبة Firebase بدون استخدام BoM

    إذا اخترت عدم استخدام Firebase BoM، يجب تحديد كل إصدار من مكتبة Firebase في سطر التبعية الخاص به.

    يُرجى العلم أنّه في حال استخدام مكتبات Firebase متعدّدة في تطبيقك، ننصحك بشدة باستخدام BoM لإدارة إصدارات المكتبة، ما يضمن توافق جميع الإصدارات.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    هل تبحث عن وحدة مكتبة خاصة بلغة Kotlin؟ اعتبارًا من تشرين الأول (أكتوبر) 2023 (Firebase BoM 32.5.0)، يمكن لمطوّري Kotlin وJava الاعتماد على وحدة المكتبة الرئيسية (للاطّلاع على التفاصيل، راجِع الأسئلة الشائعة حول هذه المبادرة).
  3. إذا لم يسبق لك تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية لمشروعك، عليك إجراء ذلك الآن:

    1. افتح Firebase ML صفحة واجهات برمجة التطبيقات في وحدة تحكّم Firebase.
    2. إذا لم تكن قد أجريت ترقية لمشروعك إلى خطة أسعار Blaze، انقر على ترقية لإجراء ذلك. (لن يُطلب منك إجراء الترقية إلا إذا كان مشروعك غير مُدرَج في خطة Blaze).

      يمكن للمشاريع على مستوى Blaze فقط استخدام واجهات برمجة التطبيقات المستندة إلى Cloud.

    3. إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية مفعّلة، انقر على تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.

أنت الآن جاهز لبدء التعرّف على النص في الصور.

إرشادات حول إدخال الصور

  • لكي تتمكّن ميزة Firebase ML من التعرّف على النص بدقة، يجب أن تحتوي صور الإدخال على نص يمثّله عدد كافٍ من بيانات البكسل. من الأفضل أن يكون حجم كل حرف في النص اللاتيني 16×16 بكسل على الأقل. بالنسبة إلى النص باللغة الصينية واليابانية والكورية، يجب أن يكون حجم كل حرف 24 × 24 بكسل. بالنسبة إلى جميع اللغات، لا يُحسِّن بشكل عام حجم الحروف الأكبر من 24×24 بكسل من دقتها.

    على سبيل المثال، قد تكون الصورة بحجم 640×480 مناسبة لمسح بطاقة تعريف ملف شخصي تشغل العرض الكامل للصورة ضوئيًا. لمسح مستند مطبوع على ورقة بحجم A4 ضوئيًا، قد تكون صورة بدقة 720×1280 بكسل مطلوبة.

  • يمكن أن يؤثّر تركيز الصورة السيئ في دقة التعرّف على النص. إذا لم يكن بإمكانك الحصول على نتائج مقبولة، حاوِل أن تطلب من المستخدم إعادة التقاط الصورة.


التعرّف على النص في الصور

للتعرّف على النص في صورة، شغِّل معرّف النصوص كما هو موضّح أدناه.

1. تشغيل أداة التعرّف على النص

للتعرّف على نص في صورة، أنشئ عنصرًا من النوع FirebaseVisionImage من Bitmap أو media.Image أو ByteBuffer أو صفيف بايت أو ملف على الجهاز. بعد ذلك، نقْل عنصر FirebaseVisionImage إلى الطريقة processImage في FirebaseVisionTextRecognizer.

  1. أنشئ عنصرًا FirebaseVisionImage من صورتك.

    • لإنشاء عنصر FirebaseVisionImage من media.Image، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصر media.Image ودرجة دوران الصورة إلى FirebaseVisionImage.fromMediaImage().

      إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئةOnImageCapturedListener و ImageAnalysis.Analyzer قيمة الدوران بالنيابة عنك، لذا ما عليك سوى تحويل الدوران إلى أحد ROTATION_ Firebase ML الثابتة قبل استدعاء FirebaseVisionImage.fromMediaImage():

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      إذا كنت لا تستخدم مكتبة كاميرا تمنحك معلومات عن دوران الصورة، يمكنك احتسابها من خلال دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      بعد ذلك، مرِّر العنصر media.Image وقيمة الدوران إلى FirebaseVisionImage.fromMediaImage():

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • لإنشاء عنصر FirebaseVisionImage من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلى FirebaseVisionImage.fromFilePath(). يكون ذلك مفيدًا عند استخدام نية ACTION_GET_CONTENT لطلب تحديد صورة من تطبيق معرض الصور.

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • لإنشاء عنصر FirebaseVisionImage من ByteBuffer أو صفيف بايت، يجب أولاً احتساب ملفه الشخصي للدوران كما هو موضّح أعلاه لإدخال media.Image.

      بعد ذلك، أنشئ عنصرًا من النوع FirebaseVisionImageMetadata يحتوي على ارتفاع الصورة وعرضها وتنسيق ترميز اللون وتدويرها:

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      استخدِم المخزن المؤقت أو الصفيف وعنصر البيانات الوصفية لإنشاء عنصر FirebaseVisionImage:

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • لإنشاء عنصر FirebaseVisionImage من عنصر Bitmap:

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      يجب أن تكون الصورة التي يمثّلها عنصر Bitmap منتصبة، بدون الحاجة إلى إجراء أيّ دوران إضافي.

  2. احصل على مثيل من FirebaseVisionTextRecognizer.

    Kotlin

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
        .setLanguageHints(listOf("en", "hi"))
        .build()

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
  3. أخيرًا، نقْل الصورة إلى طريقة processImage:

    Kotlin

    val result = detector.processImage(image)
        .addOnSuccessListener { firebaseVisionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

2- استخراج النص من مجموعات النصوص التي تم التعرّف عليها

في حال نجاح عملية التعرّف على النص، سيتم تمرير عنصر FirebaseVisionText إلى معالج الحدث النجاح. يحتوي عنصر FirebaseVisionText على النص الكامل الذي تم التعرّف عليه في الصورة وصفر أو أكثر من عناصر TextBlock.

يمثّل كل TextBlock كتلة مستطيلة من النص، والتي تحتوي على صفر أو أكثر من عناصر Line. يحتوي كل عنصر Line على صفر أو أكثر من عناصر Element التي تمثّل الكلمات والعناصر المشابهة للكلمات (التواريخ والأرقام وما إلى ذلك).

بالنسبة إلى كلّ عنصر من عناصر TextBlock وLine وElement، يمكنك الحصول على النص الذي تم التعرّف عليه في المنطقة والإحداثيات الحدودية للمنطقة.

على سبيل المثال:

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

الخطوات التالية


التعرّف على النص في صور المستندات

للتعرّف على نص مستند، عليك ضبط ملف معالجة محتوى المستند وتشغيله كما هو موضّح أدناه.

توفّر واجهة برمجة التطبيقات لميزة التعرّف على نص المستندات، الموضّحة أدناه، واجهة مُعدّة لتسهيل العمل مع صور المستندات. ومع ذلك، إذا كنت تفضّل الواجهة التي تقدّمها واجهة برمجة التطبيقات FirebaseVisionTextRecognizer، يمكنك استخدامها بدلاً من ذلك لمسح المستندات ضوئيًا من خلال ضبط معرّف النصوص في السحابة لاستخدام نموذج النصوص الكثيفة.

لاستخدام واجهة برمجة التطبيقات لميزة التعرّف على نص المستندات:

1. تشغيل أداة التعرّف على النص

للتعرّف على نص في صورة، أنشئ عنصرًا من النوع FirebaseVisionImage من Bitmap أو media.Image أو ByteBuffer أو صفيف بايت أو ملف على الجهاز. بعد ذلك، نقْل عنصر FirebaseVisionImage إلى الطريقة processImage في FirebaseVisionDocumentTextRecognizer.

  1. أنشئ عنصرًا FirebaseVisionImage من صورتك.

    • لإنشاء عنصر FirebaseVisionImage من media.Image، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصر media.Image ودرجة دوران الصورة إلى FirebaseVisionImage.fromMediaImage().

      إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئةOnImageCapturedListener و ImageAnalysis.Analyzer قيمة الدوران بالنيابة عنك، لذا ما عليك سوى تحويل الدوران إلى أحد ROTATION_ Firebase ML الثابتة قبل استدعاء FirebaseVisionImage.fromMediaImage():

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      إذا كنت لا تستخدم مكتبة كاميرا تمنحك معلومات عن دوران الصورة، يمكنك احتسابها من خلال دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      بعد ذلك، مرِّر العنصر media.Image وقيمة الدوران إلى FirebaseVisionImage.fromMediaImage():

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • لإنشاء عنصر FirebaseVisionImage من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلى FirebaseVisionImage.fromFilePath(). يكون ذلك مفيدًا عند استخدام نية ACTION_GET_CONTENT لطلب تحديد صورة من تطبيق معرض الصور.

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • لإنشاء عنصر FirebaseVisionImage من ByteBuffer أو صفيف بايت، يجب أولاً احتساب ملفه الشخصي للدوران كما هو موضّح أعلاه لإدخال media.Image.

      بعد ذلك، أنشئ عنصرًا من النوع FirebaseVisionImageMetadata يحتوي على ارتفاع الصورة وعرضها وتنسيق ترميز اللون وتدويرها:

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      استخدِم المخزن المؤقت أو الصفيف وعنصر البيانات الوصفية لإنشاء عنصر FirebaseVisionImage:

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • لإنشاء عنصر FirebaseVisionImage من عنصر Bitmap:

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      يجب أن تكون الصورة التي يمثّلها عنصر Bitmap منتصبة، بدون الحاجة إلى إجراء أيّ دوران إضافي.

  2. الحصول على مثيل من FirebaseVisionDocumentTextRecognizer:

    Kotlin

    val detector = FirebaseVision.getInstance()
        .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
        .setLanguageHints(listOf("en", "hi"))
        .build()
    val detector = FirebaseVision.getInstance()
        .getCloudDocumentTextRecognizer(options)

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

  3. أخيرًا، نقْل الصورة إلى طريقة processImage:

    Kotlin

    detector.processImage(myImage)
        .addOnSuccessListener { firebaseVisionDocumentText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

2- استخراج النص من مجموعات النصوص التي تم التعرّف عليها

إذا نجحت عملية التعرّف على النص، سيتم عرض عنصر FirebaseVisionDocumentText. يحتوي عنصر FirebaseVisionDocumentText على النص الكامل الذي تم التعرّف عليه في الصورة وتدرّج هرمي للعناصر التي تعكس بنية المستند الذي تم التعرّف عليه:

بالنسبة إلى كل عنصر من عناصر Block وParagraph وWord وSymbol، يمكنك الحصول على النص الذي تم التعرّف عليه في المنطقة والإحداثيات الحدودية للمنطقة.

على سبيل المثال:

Kotlin

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

الخطوات التالية