Android'de Firebase Auth ve Functions işlevlerini kullanarak Cloud Vision ile resimlerdeki metinleri güvenli bir şekilde tanıyın

Uygulamanızdan Google Cloud API çağırmak için yetkilendirmeyi yürüten ve API anahtarları gibi gizli anahtar değerlerini koruyan ara bir REST API oluşturmanız gerekir. Ardından, bu ara hizmetle kimlik doğrulaması yapmak ve bu hizmetle iletişim kurmak için mobil uygulamanızda kod yazmanız gerekir.

Bu REST API'yi oluşturmanın bir yolu da Firebase Authentication and Functions'ı kullanmaktır. Firebase Authentication and Functions, kimlik doğrulamayı gerçekleştiren ve önceden oluşturulmuş SDK'larla mobil uygulamanızdan çağrılabilen, Google Cloud API'lerine yönetilen, sunucusuz bir ağ geçidi sağlar.

Bu kılavuzda, uygulamanızdan Cloud Vision API'yi çağırmak için bu tekniğin nasıl kullanılacağı gösterilmektedir. Bu yöntem, kimliği doğrulanmış tüm kullanıcıların Cloud projeniz üzerinden Cloud Vision tarafından faturalandırılan hizmetlere erişmesine olanak tanır. Bu nedenle, devam etmeden önce bu kimlik doğrulama mekanizmasının kullanım alanınız için yeterli olup olmadığını düşünün.

Başlamadan önce

Projenizi yapılandırın

  1. Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
  2. Projeniz için Cloud tabanlı API'leri henüz etkinleştirmediyseniz hemen etkinleştirin:

    1. Firebase konsolunun Firebase ML API'leri sayfasını açın.
    2. Projenizi daha önce Blaze fiyatlandırma planına yükseltmediyseniz Yükselt'i tıklayarak yükseltme yapabilirsiniz. (Yalnızca projeniz Blaze planında değilse yükseltme yapmanız istenir.)

      Bulut tabanlı API'ler yalnızca Blaze düzeyindeki projelerde kullanılabilir.

    3. Cloud tabanlı API'ler henüz etkinleştirilmemişse Cloud tabanlı API'leri etkinleştir'i tıklayın.
  3. Mevcut Firebase API anahtarlarınızı, Cloud Vision API'ye erişime izin vermeyecek şekilde yapılandırın:
    1. Cloud Console'un Kimlik Bilgileri sayfasını açın.
    2. Listedeki her API anahtarı için düzenleme görünümünü açın ve Anahtar Kısıtlamaları bölümünde Cloud Vision API haricindeki tüm mevcut API'leri listeye ekleyin.

Çağrılabilir işlevi dağıtma

Ardından, uygulamanız ile Cloud Vision API arasında köprü oluşturmak için kullanacağınız Cloud Functions işlevini dağıtın. functions-samples deposu, kullanabileceğiniz bir örnek içerir.

Varsayılan olarak, Cloud Vision API'ye bu işlev üzerinden erişmek, yalnızca uygulamanızın kimliği doğrulanmış kullanıcılarının Cloud Vision API'ye erişmesine izin verir. İşlevi farklı şartlara göre değiştirebilirsiniz.

İşlevi dağıtmak için:

  1. functions-samples depoyu klonlayın veya indirin ve Node-1st-gen/vision-annotate-image dizinine geçin:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. Bağımlılıkları yükleyin:
    cd functions
    npm install
    cd ..
    
  3. Firebase CLI'ınız yoksa yükleyin.
  4. vision-annotate-image dizininde bir Firebase projesi başlatın. İstendiğinde listeden projenizi seçin.
    firebase init
  5. İşlevi dağıtın:
    firebase deploy --only functions:annotateImage

Firebase Auth'u uygulamanıza ekleyin

Yukarıda dağıtılan çağrılabilir işlev, uygulamanızın kimliği doğrulanmamış kullanıcılarından gelen tüm istekleri reddeder. Henüz yapmadıysanız uygulamanıza Firebase Auth'u eklemeniz gerekir.

Gerekli bağımlılıkları uygulamanıza ekleyin

  • Cloud Functions for Firebase (istemci) ve gson Android kitaplıklarının bağımlılıklarını modül (uygulama düzeyi) Gradle dosyanıza (genellikle <project>/<app-module>/build.gradle.kts veya <project>/<app-module>/build.gradle) ekleyin:
    implementation("com.google.firebase:firebase-functions:21.0.0")
    implementation("com.google.code.gson:gson:2.8.6")
  • Artık resimlerdeki metinleri tanımaya hazırsınız.

    1. Giriş resmini hazırlama

    Cloud Vision'ı çağırmak için görüntünün base64 kodlu bir dize olarak biçimlendirilmelidir. Kayıtlı bir dosya URI'sındaki bir resmi işlemek için:
    1. Resmi Bitmap nesnesi olarak alın:

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
      

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
    2. Dilerseniz bant genişliğinden tasarruf etmek için resmin ölçeğini küçültebilirsiniz. Cloud Vision'ın önerilen resim boyutlarına bakın.

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                  (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                  (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);
    3. Bit eşlem nesnesini, base64 kodlamalı bir dizeye dönüştürün:

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
    4. Bitmap nesnesinin temsil ettiği resim, ek döndürme gerekmeden dik olmalıdır.

    2. Metni tanımak için çağrılabilir işlevi çağırın

    Bir görüntüdeki metni tanımak için bir JSON Cloud Vision isteği ileterek çağrılabilir işlevi çağırın.

    1. Öncelikle, bir Cloud Functions örneğini başlatın:

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      
    2. İşlevin çağrılması için bir yöntem tanımlayın:

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
              .getHttpsCallable("annotateImage")
              .call(requestJson)
              .continueWith { task ->
                  // This continuation runs on either success or failure, but if the task
                  // has failed then result will throw an Exception which will be
                  // propagated down.
                  val result = task.result?.data
                  JsonParser.parseString(Gson().toJson(result))
              }
      }
      

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      
    3. JSON isteğini oluşturun. Cloud Vision API iki Tür metin algılamayı destekler: TEXT_DETECTION ve DOCUMENT_TEXT_DETECTION. İki kullanım alanı arasındaki fark için Cloud Vision OCR Belgeleri'ne bakın.

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      // Add features to the request
      val feature = JsonObject()
      feature.add("type", JsonPrimitive("TEXT_DETECTION"))
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("type", new JsonPrimitive("TEXT_DETECTION"));
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      

      İsteğe bağlı olarak, dil algılama konusunda yardımcı olması için dil ipuçları sağlayın (desteklenen dillere bakın):

      Kotlin+KTX

      val imageContext = JsonObject()
      val languageHints = JsonArray()
      languageHints.add("en")
      imageContext.add("languageHints", languageHints)
      request.add("imageContext", imageContext)
      

      Java

      JsonObject imageContext = new JsonObject();
      JsonArray languageHints = new JsonArray();
      languageHints.add("en");
      imageContext.add("languageHints", languageHints);
      request.add("imageContext", imageContext);
      
    4. Son olarak, işlevi çağırın:

      Kotlin+KTX

      annotateImage(request.toString())
          .addOnCompleteListener { task ->
              if (!task.isSuccessful) {
                  // Task failed with an exception
                  // ...
              } else {
                  // Task completed successfully
                  // ...
              }
          }
      

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

    3. Tanınan metin bloklarındaki metni ayıkla

    Metin tanıma işlemi başarılı olursa görevin sonucunda BatchAnnotateImagesResponse JSON yanıtı döndürülür. Metin ek açıklamaları fullTextAnnotation nesnesinde bulunabilir.

    Tanınan metni text alanında dize olarak alabilirsiniz. Örnek:

    Kotlin+KTX

    val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
    System.out.format("%nComplete annotation:")
    System.out.format("%n%s", annotation["text"].asString)
    

    Java

    JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
    System.out.format("%nComplete annotation:%n");
    System.out.format("%s%n", annotation.get("text").getAsString());
    

    Resmin belirli bölgelerine özel bilgileri de alabilirsiniz. Her block, paragraph, word ve symbol için bölgede tanınan metin ve bölgenin sınırlayıcı koordinatlarını alabilirsiniz. Örnek:

    Kotlin+KTX

    for (page in annotation["pages"].asJsonArray) {
        var pageText = ""
        for (block in page.asJsonObject["blocks"].asJsonArray) {
            var blockText = ""
            for (para in block.asJsonObject["paragraphs"].asJsonArray) {
                var paraText = ""
                for (word in para.asJsonObject["words"].asJsonArray) {
                    var wordText = ""
                    for (symbol in word.asJsonObject["symbols"].asJsonArray) {
                        wordText += symbol.asJsonObject["text"].asString
                        System.out.format(
                            "Symbol text: %s (confidence: %f)%n",
                            symbol.asJsonObject["text"].asString,
                            symbol.asJsonObject["confidence"].asFloat,
                        )
                    }
                    System.out.format(
                        "Word text: %s (confidence: %f)%n%n",
                        wordText,
                        word.asJsonObject["confidence"].asFloat,
                    )
                    System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
                    paraText = String.format("%s%s ", paraText, wordText)
                }
                System.out.format("%nParagraph: %n%s%n", paraText)
                System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
                System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
                blockText += paraText
            }
            pageText += blockText
        }
    }
    

    Java

    for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
        StringBuilder pageText = new StringBuilder();
        for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
            StringBuilder blockText = new StringBuilder();
            for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
                StringBuilder paraText = new StringBuilder();
                for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
                    StringBuilder wordText = new StringBuilder();
                    for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
                        wordText.append(symbol.getAsJsonObject().get("text").getAsString());
                        System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
                    }
                    System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
                    System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
                    paraText.append(wordText.toString()).append(" ");
                }
                System.out.format("%nParagraph:%n%s%n", paraText);
                System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
                System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
                blockText.append(paraText);
            }
            pageText.append(blockText);
        }
    }