Чтобы вызвать API Google Cloud из вашего приложения, вам необходимо создать промежуточный REST API, который обрабатывает авторизацию и защищает секретные значения, такие как ключи API. Затем вам нужно написать код в своем мобильном приложении для аутентификации и связи с этой промежуточной службой.
Один из способов создать этот REST API — использовать Firebase Authentication and Functions, который предоставляет вам управляемый бессерверный шлюз к Google Cloud API, который обрабатывает аутентификацию и может быть вызван из вашего мобильного приложения с помощью предварительно созданных SDK.
В этом руководстве показано, как использовать этот метод для вызова API Cloud Vision из вашего приложения. Этот метод позволит всем прошедшим проверку подлинности пользователям получить доступ к платным услугам Cloud Vision через ваш облачный проект, поэтому, прежде чем продолжить, подумайте, достаточен ли этот механизм аутентификации для вашего варианта использования.
Прежде чем начать
Настройте свой проект
- Если вы еще этого не сделали, добавьте Firebase в свой проект Android .
Если вы еще не включили облачные API для своего проекта, сделайте это сейчас:
- Откройте страницу API Firebase ML в консоли Firebase .
Если вы еще не обновили свой проект до тарифного плана Blaze, нажмите «Обновить» , чтобы сделать это. (Вам будет предложено выполнить обновление, только если ваш проект не входит в план Blaze.)
Только проекты уровня Blaze могут использовать облачные API.
- Если облачные API еще не включены, нажмите «Включить облачные API» .
- Настройте существующие ключи API Firebase, чтобы запретить доступ к Cloud Vision API:
- Откройте страницу «Учетные данные» облачной консоли.
- Для каждого ключа API в списке откройте представление редактирования и в разделе «Ограничения ключей» добавьте в список все доступные API , кроме Cloud Vision API.
Развертывание вызываемой функции
Затем разверните облачную функцию, которую вы будете использовать для соединения вашего приложения и Cloud Vision API. Репозиторий functions-samples
содержит пример, который вы можете использовать.
По умолчанию доступ к Cloud Vision API через эту функцию позволит только прошедшим проверку подлинности пользователям вашего приложения получить доступ к Cloud Vision API. Вы можете изменить функцию для различных требований.
Чтобы развернуть функцию:
- Клонируйте или загрузите репозиторий функций-образцов и перейдите в каталог
Node-1st-gen/vision-annotate-image
:git clone https://github.com/firebase/functions-samples
cd Node-1st-gen/vision-annotate-image
- Установите зависимости:
cd functions
npm install
cd ..
- Если у вас нет Firebase CLI, установите его .
- Инициализируйте проект Firebase в каталоге
vision-annotate-image
. При появлении запроса выберите свой проект в списке.firebase init
- Разверните функцию:
firebase deploy --only functions:annotateImage
Добавьте Firebase Auth в свое приложение
Вызываемая функция, развернутая выше, отклонит любой запрос от неаутентифицированных пользователей вашего приложения. Если вы еще этого не сделали, вам нужно будет добавить Firebase Auth в свое приложение.
Добавьте необходимые зависимости в ваше приложение
<project>/<app-module>/build.gradle.kts
или <project>/<app-module>/build.gradle
): implementation("com.google.firebase:firebase-functions:21.0.0") implementation("com.google.code.gson:gson:2.8.6")
Теперь вы готовы начать распознавать текст на изображениях.
1. Подготовьте входное изображение
Чтобы вызвать Cloud Vision, изображение должно быть отформатировано как строка в кодировке Base64. Чтобы обработать изображение из URI сохраненного файла:- Получите изображение как объект
Bitmap
:Kotlin+KTX
var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
Java
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
- При необходимости уменьшите изображение, чтобы сэкономить на пропускной способности. См. рекомендуемые размеры изображений Cloud Vision.
Kotlin+KTX
private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap { val originalWidth = bitmap.width val originalHeight = bitmap.height var resizedWidth = maxDimension var resizedHeight = maxDimension if (originalHeight > originalWidth) { resizedHeight = maxDimension resizedWidth = (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt() } else if (originalWidth > originalHeight) { resizedWidth = maxDimension resizedHeight = (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt() } else if (originalHeight == originalWidth) { resizedHeight = maxDimension resizedWidth = maxDimension } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false) }
Java
private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) { int originalWidth = bitmap.getWidth(); int originalHeight = bitmap.getHeight(); int resizedWidth = maxDimension; int resizedHeight = maxDimension; if (originalHeight > originalWidth) { resizedHeight = maxDimension; resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight); } else if (originalWidth > originalHeight) { resizedWidth = maxDimension; resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth); } else if (originalHeight == originalWidth) { resizedHeight = maxDimension; resizedWidth = maxDimension; } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false); }
Kotlin+KTX
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640)
Java
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640);
- Преобразуйте растровый объект в строку в кодировке Base64:
Kotlin+KTX
// Convert bitmap to base64 encoded string val byteArrayOutputStream = ByteArrayOutputStream() bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream) val imageBytes: ByteArray = byteArrayOutputStream.toByteArray() val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
Java
// Convert bitmap to base64 encoded string ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream); byte[] imageBytes = byteArrayOutputStream.toByteArray(); String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
Изображение, представленное объектом
Bitmap
, должно быть вертикальным, без необходимости дополнительного поворота. 2. Вызов вызываемой функции для распознавания текста.
Чтобы распознать текст на изображении, вызовите вызываемую функцию, передав запрос JSON Cloud Vision .
Сначала инициализируйте экземпляр Cloud Functions:
Kotlin+KTX
private lateinit var functions: FirebaseFunctions // ... functions = Firebase.functions
Java
private FirebaseFunctions mFunctions; // ... mFunctions = FirebaseFunctions.getInstance();
Определите метод вызова функции:
Kotlin+KTX
private fun annotateImage(requestJson: String): Task<JsonElement> { return functions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith { task -> // This continuation runs on either success or failure, but if the task // has failed then result will throw an Exception which will be // propagated down. val result = task.result?.data JsonParser.parseString(Gson().toJson(result)) } }
Java
private Task<JsonElement> annotateImage(String requestJson) { return mFunctions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith(new Continuation<HttpsCallableResult, JsonElement>() { @Override public JsonElement then(@NonNull Task<HttpsCallableResult> task) { // This continuation runs on either success or failure, but if the task // has failed then getResult() will throw an Exception which will be // propagated down. return JsonParser.parseString(new Gson().toJson(task.getResult().getData())); } }); }
Создайте запрос JSON. API Cloud Vision поддерживает два типа обнаружения текста:
TEXT_DETECTION
иDOCUMENT_TEXT_DETECTION
. См. документацию Cloud Vision OCR, чтобы узнать о разнице между двумя вариантами использования.Kotlin+KTX
// Create json request to cloud vision val request = JsonObject() // Add image to request val image = JsonObject() image.add("content", JsonPrimitive(base64encoded)) request.add("image", image) // Add features to the request val feature = JsonObject() feature.add("type", JsonPrimitive("TEXT_DETECTION")) // Alternatively, for DOCUMENT_TEXT_DETECTION: // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION")) val features = JsonArray() features.add(feature) request.add("features", features)
Java
// Create json request to cloud vision JsonObject request = new JsonObject(); // Add image to request JsonObject image = new JsonObject(); image.add("content", new JsonPrimitive(base64encoded)); request.add("image", image); //Add features to the request JsonObject feature = new JsonObject(); feature.add("type", new JsonPrimitive("TEXT_DETECTION")); // Alternatively, for DOCUMENT_TEXT_DETECTION: //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION")); JsonArray features = new JsonArray(); features.add(feature); request.add("features", features);
При необходимости предоставьте подсказки по языку , которые помогут определить язык (см. поддерживаемые языки ):
Kotlin+KTX
val imageContext = JsonObject() val languageHints = JsonArray() languageHints.add("en") imageContext.add("languageHints", languageHints) request.add("imageContext", imageContext)
Java
JsonObject imageContext = new JsonObject(); JsonArray languageHints = new JsonArray(); languageHints.add("en"); imageContext.add("languageHints", languageHints); request.add("imageContext", imageContext);
Наконец, вызовите функцию:
Kotlin+KTX
annotateImage(request.toString()) .addOnCompleteListener { task -> if (!task.isSuccessful) { // Task failed with an exception // ... } else { // Task completed successfully // ... } }
Java
annotateImage(request.toString()) .addOnCompleteListener(new OnCompleteListener<JsonElement>() { @Override public void onComplete(@NonNull Task<JsonElement> task) { if (!task.isSuccessful()) { // Task failed with an exception // ... } else { // Task completed successfully // ... } } });
3. Извлечение текста из блоков распознанного текста.
Если операция распознавания текста завершится успешно, в результате задачи будет возвращен ответ BatchAnnotateImagesResponse в формате JSON. Текстовые аннотации можно найти в объектеfullTextAnnotation
. Вы можете получить распознанный текст в виде строки в text
поле. Например:
Kotlin+KTX
val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
System.out.format("%nComplete annotation:")
System.out.format("%n%s", annotation["text"].asString)
Java
JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
System.out.format("%nComplete annotation:%n");
System.out.format("%s%n", annotation.get("text").getAsString());
Вы также можете получить информацию, относящуюся к областям изображения. Для каждого block
, paragraph
, word
и symbol
вы можете получить текст, распознанный в регионе, и ограничивающие координаты региона. Например:
Kotlin+KTX
for (page in annotation["pages"].asJsonArray) {
var pageText = ""
for (block in page.asJsonObject["blocks"].asJsonArray) {
var blockText = ""
for (para in block.asJsonObject["paragraphs"].asJsonArray) {
var paraText = ""
for (word in para.asJsonObject["words"].asJsonArray) {
var wordText = ""
for (symbol in word.asJsonObject["symbols"].asJsonArray) {
wordText += symbol.asJsonObject["text"].asString
System.out.format(
"Symbol text: %s (confidence: %f)%n",
symbol.asJsonObject["text"].asString,
symbol.asJsonObject["confidence"].asFloat,
)
}
System.out.format(
"Word text: %s (confidence: %f)%n%n",
wordText,
word.asJsonObject["confidence"].asFloat,
)
System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
paraText = String.format("%s%s ", paraText, wordText)
}
System.out.format("%nParagraph: %n%s%n", paraText)
System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
blockText += paraText
}
pageText += blockText
}
}
Java
for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
StringBuilder pageText = new StringBuilder();
for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
StringBuilder blockText = new StringBuilder();
for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
StringBuilder paraText = new StringBuilder();
for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
StringBuilder wordText = new StringBuilder();
for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
wordText.append(symbol.getAsJsonObject().get("text").getAsString());
System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
}
System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
paraText.append(wordText.toString()).append(" ");
}
System.out.format("%nParagraph:%n%s%n", paraText);
System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
blockText.append(paraText);
}
pageText.append(blockText);
}
}