اگر برنامه شما از مدلهای سفارشی TensorFlow Lite استفاده میکند، میتوانید از Firebase ML برای استقرار مدلهای خود استفاده کنید. با استقرار مدلها با Firebase، میتوانید حجم دانلود اولیه برنامه خود را کاهش دهید و مدلهای ML برنامه خود را بدون انتشار نسخه جدیدی از برنامه خود بهروزرسانی کنید. و با Remote Config و A/B Testing، می توانید مدل های مختلف را به صورت پویا به مجموعه های مختلف کاربران ارائه دهید.
مدل های TensorFlow Lite
مدل های TensorFlow Lite مدل های ML هستند که برای اجرا در دستگاه های تلفن همراه بهینه شده اند. برای دریافت یک مدل TensorFlow Lite:
- از یک مدل از پیش ساخته شده مانند یکی از مدل های رسمی TensorFlow Lite استفاده کنید
- یک مدل TensorFlow، مدل Keras یا تابع بتن را به TensorFlow Lite تبدیل کنید.
توجه داشته باشید که در صورت عدم وجود کتابخانه TensorFlow Lite برای Dart، باید با کتابخانه بومی TensorFlow Lite برای پلتفرمهای خود ادغام شوید. این ادغام در اینجا مستند نشده است.
قبل از شروع
اگر قبلاً این کار را نکرده اید ، SDK های Firebase را برای Flutter نصب و مقداردهی اولیه کنید .
از دایرکتوری ریشه پروژه Flutter خود، دستور زیر را برای نصب افزونه دانلودر مدل ML اجرا کنید:
flutter pub add firebase_ml_model_downloader
پروژه خود را بازسازی کنید:
flutter run
1. مدل خود را مستقر کنید
مدلهای TensorFlow سفارشی خود را با استفاده از کنسول Firebase یا Firebase Admin Python و Node.js SDK اجرا کنید. به استقرار و مدیریت مدلهای سفارشی مراجعه کنید.
پس از اینکه یک مدل سفارشی را به پروژه Firebase خود اضافه کردید، میتوانید با استفاده از نامی که مشخص کردهاید به مدل در برنامههای خود ارجاع دهید. در هر زمان، میتوانید یک مدل جدید TensorFlow Lite را اجرا کنید و با فراخوانی getModel()
مدل جدید را در دستگاههای کاربران دانلود کنید (به زیر مراجعه کنید).
2. مدل را در دستگاه دانلود کنید و یک مفسر TensorFlow Lite را مقداردهی اولیه کنید
برای استفاده از مدل TensorFlow Lite در برنامه خود، ابتدا از دانلودر مدل برای دانلود آخرین نسخه مدل در دستگاه استفاده کنید. سپس، یک مفسر TensorFlow Lite را با مدل نمونهسازی کنید.
برای شروع دانلود مدل، متد getModel()
دانلود کننده مدل را فراخوانی کنید، نامی را که به مدل اختصاص داده اید هنگام آپلود کردن، مشخص کنید که آیا می خواهید همیشه آخرین مدل را دانلود کنید، و شرایطی که می خواهید اجازه دانلود را بدهید.
شما می توانید از بین سه رفتار دانلود انتخاب کنید:
نوع دانلود | توضیحات |
---|---|
localModel | مدل محلی را از دستگاه دریافت کنید. اگر هیچ مدل محلی در دسترس نباشد، مانند latestModel عمل می کند. اگر علاقه ای به بررسی به روز رسانی مدل ندارید از این نوع دانلود استفاده کنید. برای مثال، شما از Remote Config برای بازیابی نام مدل ها استفاده می کنید و همیشه مدل ها را با نام های جدید آپلود می کنید (توصیه می شود). |
localModelUpdateInBackground | مدل محلی را از دستگاه دریافت کنید و به روز رسانی مدل را در پس زمینه شروع کنید. اگر هیچ مدل محلی در دسترس نباشد، مانند latestModel عمل می کند. |
latestModel | آخرین مدل را دریافت کنید. اگر مدل محلی آخرین نسخه باشد، مدل محلی را برمی گرداند. در غیر این صورت آخرین مدل را دانلود کنید. این رفتار تا زمانی که آخرین نسخه دانلود نشود مسدود می شود (توصیه نمی شود). از این رفتار فقط در مواردی استفاده کنید که به صراحت به آخرین نسخه نیاز دارید. |
باید عملکردهای مربوط به مدل را غیرفعال کنید - برای مثال، خاکستری کردن یا پنهان کردن بخشی از رابط کاربری خود - تا زمانی که تأیید کنید مدل دانلود شده است.
FirebaseModelDownloader.instance
.getModel(
"yourModelName",
FirebaseModelDownloadType.localModel,
FirebaseModelDownloadConditions(
iosAllowsCellularAccess: true,
iosAllowsBackgroundDownloading: false,
androidChargingRequired: false,
androidWifiRequired: false,
androidDeviceIdleRequired: false,
)
)
.then((customModel) {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
// The CustomModel object contains the local path of the model file,
// which you can use to instantiate a TensorFlow Lite interpreter.
final localModelPath = customModel.file;
// ...
});
بسیاری از برنامهها وظیفه دانلود را در کد اولیه خود شروع میکنند، اما شما میتوانید این کار را در هر زمانی قبل از نیاز به استفاده از مدل انجام دهید.
3. استنتاج بر روی داده های ورودی انجام دهید
اکنون که فایل مدل خود را در دستگاه دارید، می توانید از آن با مفسر TensorFlow Lite برای انجام استنتاج استفاده کنید. در صورت عدم وجود کتابخانه TensorFlow Lite برای Dart، باید با کتابخانههای بومی TensorFlow Lite برای iOS و Android یکپارچه شوید.
ضمیمه: امنیت مدل
صرف نظر از اینکه چگونه مدلهای TensorFlow Lite خود را در دسترس Firebase ML قرار میدهید، Firebase ML آنها را در قالب استاندارد پروتوباف سریالی در حافظه محلی ذخیره میکند.
در تئوری، این بدان معنی است که هر کسی می تواند مدل شما را کپی کند. با این حال، در عمل، بیشتر مدلها به قدری برنامههای کاربردی خاص هستند و بهوسیله بهینهسازیها مبهم هستند که خطر آن مشابه خطر جداسازی و استفاده مجدد کد شما توسط رقبا است. با این وجود، قبل از استفاده از یک مدل سفارشی در برنامه خود، باید از این خطر آگاه باشید.