Apple प्लैटफ़ॉर्म पर Firebase पुष्टि और फ़ंक्शन का इस्तेमाल करके, इमेज को Cloud Vision की मदद से सुरक्षित तरीके से लेबल करें

अपने ऐप्लिकेशन से Google Cloud API को कॉल करने के लिए, आपको एक इंटरमीडिएट बनाना होगा REST API, जो अनुमति देने को मैनेज करती है और एपीआई पासकोड जैसी सीक्रेट वैल्यू को सुरक्षित करती है. इसके बाद, आपको यह करना होगा इस बीच के लेवल पर मिलने वाली सेवा की पुष्टि करने और इससे संपर्क करने के लिए, अपने मोबाइल ऐप्लिकेशन में कोड लिखें.

इस REST API को बनाने का एक तरीका, Firebase से पुष्टि करने और फ़ंक्शन का इस्तेमाल करना है. इससे आपको मैनेज किया जा रहा बिना सर्वर वाला गेटवे मिलता है ऐसे Google Cloud API जो पुष्टि करने का काम संभालते हैं और जिन्हें आपके मोबाइल ऐप्लिकेशन से कॉल किया जा सकता है पहले से बने SDK टूल.

इस गाइड में, अपने ऐप्लिकेशन से Cloud Vision API को कॉल करने के लिए, इस तकनीक का इस्तेमाल करने का तरीका बताया गया है. इस तरीके से, पुष्टि किए गए सभी उपयोगकर्ता आपके Cloud प्रोजेक्ट के ज़रिए Cloud Vision की बिलिंग सेवाओं को ऐक्सेस कर पाएंगे. इसलिए, आगे बढ़ने से पहले देखें कि पुष्टि करने का यह तरीका आपके इस्तेमाल के उदाहरण के लिए काफ़ी है या नहीं.

शुरू करने से पहले

अपना प्रोजेक्ट कॉन्फ़िगर करना

अगर आपने पहले से अपने ऐप्लिकेशन में Firebase नहीं जोड़ा है, तो ऐसा करने के लिए शुरुआती निर्देश में दिए गए चरणों को पूरा करें.

Firebase डिपेंडेंसी इंस्टॉल और मैनेज करने के लिए, Swift पैकेज मैनेजर का इस्तेमाल करें.

  1. Xcode में, अपना ऐप्लिकेशन प्रोजेक्ट खोलने के लिए, फ़ाइल > पैकेज जोड़ना.
  2. जब कहा जाए, तब Firebase Apple प्लैटफ़ॉर्म SDK टूल का रिपॉज़िटरी जोड़ें:
  3.   https://github.com/firebase/firebase-ios-sdk.git
  4. Firebase ML लाइब्रेरी चुनें.
  5. अपने टारगेट की बिल्ड सेटिंग के अन्य लिंकर फ़्लैग सेक्शन में -ObjC फ़्लैग जोड़ें.
  6. यह काम पूरा होने पर, Xcode अपने-आप रिज़ॉल्व और डाउनलोड होना शुरू कर देगा पर निर्भर करता है.

इसके बाद, कुछ इन-ऐप्लिकेशन सेटअप करें:

  1. अपने ऐप्लिकेशन में Firebase इंपोर्ट करें:
    SwiftObjective-C
    import FirebaseMLModelDownloader
    @import FirebaseMLModelDownloader;

कॉन्फ़िगरेशन के कुछ और चरण, अब हम इस्तेमाल के लिए तैयार हैं:

  1. अगर आपने अपने प्रोजेक्ट के लिए पहले से क्लाउड-आधारित एपीआई चालू नहीं किए हैं, तो ऐसा करें अब:

    1. Firebase ML खोलें Firebase कंसोल का एपीआई पेज.
    2. अगर आपने पहले से अपने प्रोजेक्ट को Blaze प्राइसिंग प्लान में अपग्रेड नहीं किया है, तो ऐसा करने के लिए अपग्रेड करें. (आपको अपग्रेड करने के लिए तभी कहा जाएगा, जब प्रोजेक्ट ब्लेज़ प्लान में नहीं है.)

      सिर्फ़ ब्लेज़-लेवल के प्रोजेक्ट ही क्लाउड-आधारित एपीआई का इस्तेमाल कर सकते हैं.

    3. अगर क्लाउड-आधारित एपीआई पहले से चालू नहीं हैं, तो क्लाउड-आधारित एपीआई चालू करें APIs.
  2. क्लाउड का ऐक्सेस न देने के लिए, अपनी मौजूदा Firebase API कुंजियां कॉन्फ़िगर करें Vision API:
    1. Cloud Console का क्रेडेंशियल पेज खोलें.
    2. सूची में मौजूद हर एपीआई पासकोड के लिए, एडिटिंग व्यू खोलें और कुंजी पाबंदियों वाला सेक्शन, Cloud विज़न के अलावा सभी उपलब्ध एपीआई जोड़ें एपीआई को सूची में जोड़ें.

कॉल करने लायक फ़ंक्शन को डिप्लॉय करें

इसके बाद, अपने ऐप्लिकेशन और क्लाउड को जोड़ने के लिए इस्तेमाल किया जाने वाला Cloud फ़ंक्शन डिप्लॉय करें Vision API. functions-samples डेटा संग्रह स्थान में इसका एक उदाहरण है तो ये तरीके़ इस्तेमाल किए जा सकते हैं.

डिफ़ॉल्ट रूप से, इस फ़ंक्शन से Cloud Vision API को ऐक्सेस करने पर, आपके ऐप्लिकेशन के पुष्टि किए गए उपयोगकर्ता ही Cloud Vision API को ऐक्सेस कर पाएंगे. आप अलग-अलग ज़रूरतों के हिसाब से फ़ंक्शन में बदलाव करें.

फ़ंक्शन को डिप्लॉय करने के लिए:

  1. फ़ंक्शन-सैंपल रेपो का क्लोन बनाएं या उसे डाउनलोड करें और Node-1st-gen/vision-annotate-image डायरेक्ट्री में बदलें:
    git clone https://github.com/firebase/functions-samples
    cd Node-1st-gen/vision-annotate-image
    
  2. डिपेंडेंसी इंस्टॉल करें:
    cd functions
    npm install
    cd ..
  3. अगर आपके पास Firebase सीएलआई नहीं है, तो उसे इंस्टॉल करें.
  4. vision-annotate-image में Firebase प्रोजेक्ट शुरू करें डायरेक्ट्री. जब कहा जाए, तब सूची में से अपना प्रोजेक्ट चुनें.
    firebase init
  5. फ़ंक्शन को डिप्लॉय करें:
    firebase deploy --only functions:annotateImage

अपने ऐप्लिकेशन में Firebase पुष्टि करने की सुविधा जोड़ें

ऊपर डिप्लॉय किया गया कॉल करने लायक फ़ंक्शन, पुष्टि नहीं किए गए किसी भी अनुरोध को अस्वीकार कर देगा आपके ऐप्लिकेशन के उपयोगकर्ता. अगर आपने पहले से ऐसा नहीं किया है, तो आपको Firebase जोड़ना होगा अपने ऐप्लिकेशन को अनुमति देना.

अपने ऐप्लिकेशन में ज़रूरी डिपेंडेंसी जोड़ें

'Firebase के लिए Cloud Functions' लाइब्रेरी इंस्टॉल करने के लिए, Swift पैकेज मैनेजर का इस्तेमाल करें.

अब आप इमेज को लेबल करने के लिए तैयार हैं.

1. इनपुट इमेज तैयार करें

Cloud Vision को कॉल करने के लिए, इमेज को base64-एन्कोडेड के रूप में फ़ॉर्मैट किया जाना चाहिए स्ट्रिंग. UIImage प्रोसेस करने के लिए:
SwiftObjective-C
guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
let base64encodedImage = imageData.base64EncodedString()
NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
NSString *base64encodedImage =
  [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];

2. इमेज को लेबल करने के लिए, कॉल करने लायक फ़ंक्शन को शुरू करें

किसी इमेज में ऑब्जेक्ट को लेबल करने के लिए, JSON Cloud विज़न अनुरोध.

  1. सबसे पहले, Cloud Functions के इंस्टेंस को शुरू करें:

    SwiftObjective-C
    lazy var functions = Functions.functions()
    
    @property(strong, nonatomic) FIRFunctions *functions;
    
  2. टाइप को LABEL_DETECTION पर सेट करके अनुरोध तैयार करें:

    SwiftObjective-C
    let requestData = [
      "image": ["content": base64encodedImage],
      "features": ["maxResults": 5, "type": "LABEL_DETECTION"]
    ]
    
    NSDictionary *requestData = @{
      @"image": @{@"content": base64encodedImage},
      @"features": @{@"maxResults": @5, @"type": @"LABEL_DETECTION"}
    };
    
  3. आखिर में, फ़ंक्शन शुरू करें:

    SwiftObjective-C
    do {
      let result = try await functions.httpsCallable("annotateImage").call(requestData)
      print(result)
    } catch {
      if let error = error as NSError? {
        if error.domain == FunctionsErrorDomain {
          let code = FunctionsErrorCode(rawValue: error.code)
          let message = error.localizedDescription
          let details = error.userInfo[FunctionsErrorDetailsKey]
        }
        // ...
      }
    }
    
    [[_functions HTTPSCallableWithName:@"annotateImage"]
                              callWithObject:requestData
                                  completion:^(FIRHTTPSCallableResult * _Nullable result, NSError * _Nullable error) {
            if (error) {
              if ([error.domain isEqualToString:@"com.firebase.functions"]) {
                FIRFunctionsErrorCode code = error.code;
                NSString *message = error.localizedDescription;
                NSObject *details = error.userInfo[@"details"];
              }
              // ...
            }
            // Function completed succesfully
            // Get information about labeled objects
    
          }];
    

3. लेबल किए गए ऑब्जेक्ट के बारे में जानकारी पाना

अगर इमेज को लेबल करने की कार्रवाई पूरी हो जाती है, तो JSON का रिस्पॉन्स BatchAnnotateImageResponse को टास्क के नतीजे में दिखाया जाएगा. labelAnnotations में मौजूद हर ऑब्जेक्ट अरे किसी ऐसी चीज़ को दिखाता है जिस पर इमेज में लेबल किया गया था. हर लेबल के लिए, आपको लेबल के टेक्स्ट की जानकारी पा सकते हैं, नॉलेज ग्राफ़ का इकाई आईडी (अगर उपलब्ध हो), और मैच का कॉन्फ़िडेंस स्कोर. उदाहरण के लिए:

SwiftObjective-C
if let labelArray = (result?.data as? [String: Any])?["labelAnnotations"] as? [[String:Any]] {
  for labelObj in labelArray {
    let text = labelObj["description"]
    let entityId = labelObj["mid"]
    let confidence = labelObj["score"]
  }
}
NSArray *labelArray = result.data[@"labelAnnotations"];
for (NSDictionary *labelObj in labelArray) {
  NSString *text = labelObj[@"description"];
  NSString *entityId = labelObj[@"mid"];
  NSNumber *confidence = labelObj[@"score"];
}

Firebase ML lets you add powerful machine learning features to your app with ready-to-use APIs and support for custom model deployment.

Feb 28, 2025 को अपडेट किया गया