Reconhecer texto em imagens com Firebase ML no iOS

Você pode usar o Firebase ML para reconhecer texto em imagens. O Firebase ML possui uma API de uso geral adequada para reconhecer texto em imagens, como o texto de uma placa de rua, e uma API otimizada para reconhecer o texto de documentos.

Antes de você começar

    Se você ainda não adicionou o Firebase ao seu aplicativo, faça isso seguindo as etapas do guia de primeiros passos .

    Use o Swift Package Manager para instalar e gerenciar dependências do Firebase.

    1. No Xcode, com o projeto do seu aplicativo aberto, navegue até File > Add Packages .
    2. Quando solicitado, adicione o repositório SDK das plataformas Apple do Firebase:
    3.   https://github.com/firebase/firebase-ios-sdk.git
    4. Escolha a biblioteca Firebase ML.
    5. Adicione o sinalizador -ObjC à seção Outros sinalizadores de vinculador das configurações de compilação do seu destino.
    6. Quando terminar, o Xcode começará automaticamente a resolver e baixar suas dependências em segundo plano.

    Em seguida, execute algumas configurações no aplicativo:

    1. No seu aplicativo, importe o Firebase:

      Rápido

      import FirebaseMLModelDownloader

      Objetivo-C

      @import FirebaseMLModelDownloader;
  1. Se você ainda não habilitou APIs baseadas em nuvem para seu projeto, faça-o agora:

    1. Abra a página APIs do Firebase ML do console do Firebase.
    2. Se você ainda não atualizou seu projeto para o plano de preços Blaze, clique em Atualizar para fazer isso. (Você será solicitado a atualizar somente se o seu projeto não estiver no plano Blaze.)

      Somente projetos no nível Blaze podem usar APIs baseadas em nuvem.

    3. Se as APIs baseadas em nuvem ainda não estiverem habilitadas, clique em Habilitar APIs baseadas em nuvem .

Agora você está pronto para começar a reconhecer texto em imagens.

Diretrizes de imagem de entrada

  • Para que o Firebase ML reconheça o texto com precisão, as imagens de entrada devem conter texto representado por dados de pixel suficientes. Idealmente, para texto latino, cada caractere deve ter pelo menos 16x16 pixels. Para texto em chinês, japonês e coreano, cada caractere deve ter 24x24 pixels. Para todos os idiomas, geralmente não há benefício de precisão se caracteres maiores que 24x24 pixels.

    Assim, por exemplo, uma imagem de 640x480 pode funcionar bem para digitalizar um cartão de visita que ocupe toda a largura da imagem. Para digitalizar um documento impresso em papel tamanho carta, pode ser necessária uma imagem de 720x1280 pixels.

  • O foco inadequado da imagem pode prejudicar a precisão do reconhecimento de texto. Se você não estiver obtendo resultados aceitáveis, tente pedir ao usuário para recapturar a imagem.


Reconhecer texto em imagens

Para reconhecer texto em uma imagem, execute o reconhecedor de texto conforme descrito abaixo.

1. Execute o reconhecedor de texto

Passe a imagem como UIImage ou CMSampleBufferRef para o método process(_:completion:) do VisionTextRecognizer :

  1. Obtenha uma instância do VisionTextRecognizer chamando cloudTextRecognizer :

    Rápido

    let vision = Vision.vision()
    let textRecognizer = vision.cloudTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudTextRecognizer(options: options)
    

    Objetivo-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudTextRecognizerOptions *options =
            [[FIRVisionCloudTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
    
  2. Para chamar o Cloud Vision, a imagem deve ser formatada como uma string codificada em base64. Para processar um UIImage :

    Rápido

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objetivo-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. Em seguida, passe a imagem para o process(_:completion:) :

    Rápido

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }
    

    Objetivo-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
      // Recognized text
    }];
    

2. Extraia texto de blocos de texto reconhecidos

Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objeto VisionText . Um objeto VisionText contém o texto completo reconhecido na imagem e zero ou mais objetos VisionTextBlock .

Cada VisionTextBlock representa um bloco retangular de texto, que contém zero ou mais objetos VisionTextLine . Cada objeto VisionTextLine contém zero ou mais objetos VisionTextElement , que representam palavras e entidades semelhantes a palavras (datas, números e assim por diante).

Para cada objeto VisionTextBlock , VisionTextLine e VisionTextElement , você pode obter o texto reconhecido na região e as coordenadas delimitadoras da região.

Por exemplo:

Rápido

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockLanguages = block.recognizedLanguages
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for line in block.lines {
        let lineText = line.text
        let lineConfidence = line.confidence
        let lineLanguages = line.recognizedLanguages
        let lineCornerPoints = line.cornerPoints
        let lineFrame = line.frame
        for element in line.elements {
            let elementText = element.text
            let elementConfidence = element.confidence
            let elementLanguages = element.recognizedLanguages
            let elementCornerPoints = element.cornerPoints
            let elementFrame = element.frame
        }
    }
}

Objetivo-C

NSString *resultText = result.text;
for (FIRVisionTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages;
  NSArray<NSValue *> *blockCornerPoints = block.cornerPoints;
  CGRect blockFrame = block.frame;
  for (FIRVisionTextLine *line in block.lines) {
    NSString *lineText = line.text;
    NSNumber *lineConfidence = line.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages;
    NSArray<NSValue *> *lineCornerPoints = line.cornerPoints;
    CGRect lineFrame = line.frame;
    for (FIRVisionTextElement *element in line.elements) {
      NSString *elementText = element.text;
      NSNumber *elementConfidence = element.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages;
      NSArray<NSValue *> *elementCornerPoints = element.cornerPoints;
      CGRect elementFrame = element.frame;
    }
  }
}

Próximos passos


Reconhecer texto em imagens de documentos

Para reconhecer o texto de um documento, configure e execute o reconhecedor de texto do documento conforme descrito abaixo.

A API de reconhecimento de texto de documentos, descrita abaixo, fornece uma interface que pretende ser mais conveniente para trabalhar com imagens de documentos. No entanto, se você preferir a interface fornecida pela API de texto esparso, poderá usá-la para digitalizar documentos configurando o reconhecedor de texto em nuvem para usar o modelo de texto denso .

Para usar a API de reconhecimento de texto de documento:

1. Execute o reconhecedor de texto

Passe a imagem como UIImage ou CMSampleBufferRef para o método process(_:completion:) do VisionDocumentTextRecognizer :

  1. Obtenha uma instância de VisionDocumentTextRecognizer chamando cloudDocumentTextRecognizer :

    Rápido

    let vision = Vision.vision()
    let textRecognizer = vision.cloudDocumentTextRecognizer()
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    let options = VisionCloudDocumentTextRecognizerOptions()
    options.languageHints = ["en", "hi"]
    let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)
    

    Objetivo-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer];
    
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FIRVisionCloudDocumentTextRecognizerOptions *options =
            [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init];
    options.languageHints = @[@"en", @"hi"];
    FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
    
  2. Para chamar o Cloud Vision, a imagem deve ser formatada como uma string codificada em base64. Para processar um UIImage :

    Rápido

    guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return }
    let base64encodedImage = imageData.base64EncodedString()

    Objetivo-C

    NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f);
    NSString *base64encodedImage =
      [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
  3. Em seguida, passe a imagem para o process(_:completion:) :

    Rápido

    textRecognizer.process(visionImage) { result, error in
      guard error == nil, let result = result else {
        // ...
        return
      }
    
      // Recognized text
    }
    

    Objetivo-C

    [textRecognizer processImage:image
                      completion:^(FIRVisionDocumentText *_Nullable result,
                                   NSError *_Nullable error) {
      if (error != nil || result == nil) {
        // ...
        return;
      }
    
        // Recognized text
    }];
    

2. Extraia texto de blocos de texto reconhecidos

Se a operação de reconhecimento de texto for bem-sucedida, ela retornará um objeto VisionDocumentText . Um objeto VisionDocumentText contém o texto completo reconhecido na imagem e uma hierarquia de objetos que refletem a estrutura do documento reconhecido:

Para cada objeto VisionDocumentTextBlock , VisionDocumentTextParagraph , VisionDocumentTextWord e VisionDocumentTextSymbol , você pode obter o texto reconhecido na região e as coordenadas delimitadoras da região.

Por exemplo:

Rápido

let resultText = result.text
for block in result.blocks {
    let blockText = block.text
    let blockConfidence = block.confidence
    let blockRecognizedLanguages = block.recognizedLanguages
    let blockBreak = block.recognizedBreak
    let blockCornerPoints = block.cornerPoints
    let blockFrame = block.frame
    for paragraph in block.paragraphs {
        let paragraphText = paragraph.text
        let paragraphConfidence = paragraph.confidence
        let paragraphRecognizedLanguages = paragraph.recognizedLanguages
        let paragraphBreak = paragraph.recognizedBreak
        let paragraphCornerPoints = paragraph.cornerPoints
        let paragraphFrame = paragraph.frame
        for word in paragraph.words {
            let wordText = word.text
            let wordConfidence = word.confidence
            let wordRecognizedLanguages = word.recognizedLanguages
            let wordBreak = word.recognizedBreak
            let wordCornerPoints = word.cornerPoints
            let wordFrame = word.frame
            for symbol in word.symbols {
                let symbolText = symbol.text
                let symbolConfidence = symbol.confidence
                let symbolRecognizedLanguages = symbol.recognizedLanguages
                let symbolBreak = symbol.recognizedBreak
                let symbolCornerPoints = symbol.cornerPoints
                let symbolFrame = symbol.frame
            }
        }
    }
}

Objetivo-C

NSString *resultText = result.text;
for (FIRVisionDocumentTextBlock *block in result.blocks) {
  NSString *blockText = block.text;
  NSNumber *blockConfidence = block.confidence;
  NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages;
  FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak;
  CGRect blockFrame = block.frame;
  for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) {
    NSString *paragraphText = paragraph.text;
    NSNumber *paragraphConfidence = paragraph.confidence;
    NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages;
    FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak;
    CGRect paragraphFrame = paragraph.frame;
    for (FIRVisionDocumentTextWord *word in paragraph.words) {
      NSString *wordText = word.text;
      NSNumber *wordConfidence = word.confidence;
      NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages;
      FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak;
      CGRect wordFrame = word.frame;
      for (FIRVisionDocumentTextSymbol *symbol in word.symbols) {
        NSString *symbolText = symbol.text;
        NSNumber *symbolConfidence = symbol.confidence;
        NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages;
        FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak;
        CGRect symbolFrame = symbol.frame;
      }
    }
  }
}

Próximos passos