Membangun percakapan multi-giliran (chat) dengan GeminiIAP API


Dengan Gemini API, Anda dapat membuat percakapan bebas format di beberapa giliran. Vertex AI in Firebase SDK menyederhanakan proses dengan mengelola status percakapan, sehingga tidak seperti generateContentStream() atau generateContent(), Anda tidak perlu menyimpan histori percakapan sendiri.

Sebelum memulai

Jika belum melakukannya, selesaikan panduan memulai untuk Vertex AI in Firebase SDK. Pastikan Anda telah melakukan semua hal berikut:

  1. Siapkan project Firebase baru atau yang sudah ada, termasuk menggunakan paket harga Blaze dan mengaktifkan API yang diperlukan.

  2. Hubungkan aplikasi ke Firebase, termasuk mendaftarkan aplikasi dan menambahkan konfigurasi Firebase ke aplikasi.

  3. Tambahkan SDK dan lakukan inisialisasi layanan Vertex AI dan model generatif di aplikasi Anda.

Setelah menghubungkan aplikasi ke Firebase, menambahkan SDK, dan melakukan inisialisasi layanan Vertex AI dan model generatif, Anda siap memanggil Gemini API.

Mengirim permintaan perintah chat

Untuk membuat percakapan multi-giliran (seperti chat), mulailah dengan melakukan inisialisasi chat dengan memanggil startChat(). Kemudian, gunakan sendMessageStream() (atau sendMessage()) untuk mengirim pesan pengguna baru, yang juga akan menambahkan pesan dan respons ke histori chat.

Ada dua kemungkinan opsi untuk role yang terkait dengan konten dalam percakapan:

  • user: peran yang memberikan perintah. Nilai ini adalah default untuk panggilan ke sendMessageStream() (atau sendMessage()), dan fungsi akan menampilkan pengecualian jika peran yang berbeda diteruskan.

  • model: peran yang memberikan respons. Peran ini dapat digunakan saat memanggil startChat() dengan history yang ada.

Pilih apakah Anda ingin melakukan streaming respons (sendMessageStream) atau menunggu respons hingga seluruh hasilnya dihasilkan (sendMessage).

Streaming

Anda dapat mencapai interaksi yang lebih cepat dengan tidak menunggu seluruh hasil dari pembuatan model, dan sebagai gantinya menggunakan streaming untuk menangani hasil sebagian.

Tanpa streaming

Atau, Anda dapat menunggu seluruh hasil, bukan streaming; hasil hanya ditampilkan setelah model menyelesaikan seluruh proses pembuatan.

Pelajari cara memilih model Gemini dan secara opsional lokasi yang sesuai untuk kasus penggunaan dan aplikasi Anda.

Kamu bisa apa lagi?

  • Pelajari cara menghitung token sebelum mengirim perintah panjang ke model.
  • Siapkan Cloud Storage for Firebase agar Anda dapat menyertakan file besar dalam permintaan multimodal dan memiliki solusi yang lebih terkelola untuk menyediakan file dalam perintah. File dapat mencakup gambar, PDF, video, dan audio.
  • Mulailah memikirkan persiapan produksi, termasuk menyiapkan Firebase App Check untuk melindungi Gemini API dari penyalahgunaan oleh klien yang tidak sah.

Mencoba kemampuan lain Gemini API

Pelajari cara mengontrol pembuatan konten

Anda juga dapat bereksperimen dengan perintah dan konfigurasi model menggunakan Vertex AI Studio.

Pelajari model Gemini lebih lanjut

Pelajari model yang tersedia untuk berbagai kasus penggunaan serta kuota dan harganya.


Berikan masukan tentang pengalaman Anda dengan Vertex AI in Firebase