Membuat percakapan multi-giliran (chat) menggunakan Gemini API

Dengan Gemini API, Anda dapat membuat percakapan dalam format bebas di beberapa giliran. Vertex AI in Firebase SDK menyederhanakan proses dengan mengelola status percakapan, sehingga tidak seperti generateContent() (atau generateContentStream()), Anda tidak perlu menyimpan histori percakapan sendiri.

Sebelum memulai

Jika Anda belum melakukannya, selesaikan panduan memulai, yang menjelaskan cara menyiapkan project Firebase, menghubungkan aplikasi ke Firebase, menambahkan SDK, menginisialisasi layanan Vertex AI, dan membuat instance GenerativeModel.

Mengirim permintaan perintah chat

Untuk membuat percakapan multi-giliran (seperti chat), mulailah dengan melakukan inisialisasi chat dengan memanggil startChat(). Kemudian, gunakan sendMessage() untuk mengirim pesan pengguna baru, yang juga akan menambahkan pesan dan respons ke histori chat.

Ada dua kemungkinan opsi untuk role yang terkait dengan konten dalam percakapan:

  • user: peran yang memberikan perintah. Nilai ini adalah default untuk panggilan ke sendMessage(), dan fungsi akan menampilkan pengecualian jika peran yang berbeda diteruskan.

  • model: peran yang memberikan respons. Peran ini dapat digunakan saat memanggil startChat() dengan history yang ada.

Swift

Anda dapat memanggil startChat() dan sendMessage() untuk mengirim pesan pengguna baru:

import FirebaseVertexAI

// Initialize the Vertex AI service
let vertex = VertexAI.vertexAI()

// Create a `GenerativeModel` instance with a model that supports your use case
let model = vertex.generativeModel(modelName: "gemini-2.0-flash")

// Optionally specify existing chat history
let history = [
  ModelContent(role: "user", parts: "Hello, I have 2 dogs in my house."),
  ModelContent(role: "model", parts: "Great to meet you. What would you like to know?"),
]

// Initialize the chat with optional chat history
let chat = model.startChat(history: history)

// To generate text output, call sendMessage and pass in the message
let response = try await chat.sendMessage("How many paws are in my house?")
print(response.text ?? "No text in response.")

Kotlin

Anda dapat memanggil startChat() dan sendMessage() untuk mengirim pesan pengguna baru:

Untuk Kotlin, metode dalam SDK ini adalah fungsi penangguhan dan perlu dipanggil dari Cakupan coroutine.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")

// Initialize the chat
val chat = generativeModel.startChat(
  history = listOf(
    content(role = "user") { text("Hello, I have 2 dogs in my house.") },
    content(role = "model") { text("Great to meet you. What would you like to know?") }
  )
)

val response = chat.sendMessage("How many paws are in my house?")
print(response.text)

Java

Anda dapat memanggil startChat() dan sendMessage() untuk mengirim pesan pengguna baru:

Untuk Java, metode dalam SDK ini menampilkan ListenableFuture.
// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
        .generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);

// (optional) Create previous chat history for context
Content.Builder userContentBuilder = new Content.Builder();
userContentBuilder.setRole("user");
userContentBuilder.addText("Hello, I have 2 dogs in my house.");
Content userContent = userContentBuilder.build();

Content.Builder modelContentBuilder = new Content.Builder();
modelContentBuilder.setRole("model");
modelContentBuilder.addText("Great to meet you. What would you like to know?");
Content modelContent = userContentBuilder.build();

List<Content> history = Arrays.asList(userContent, modelContent);

// Initialize the chat
ChatFutures chat = model.startChat(history);

// Create a new user message
Content.Builder messageBuilder = new Content.Builder();
messageBuilder.setRole("user");
messageBuilder.addText("How many paws are in my house?");

Content message = messageBuilder.build();

// Send the message
ListenableFuture<GenerateContentResponse> response = chat.sendMessage(message);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Web

Anda dapat memanggil startChat() dan sendMessage() untuk mengirim pesan pengguna baru:

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(vertexAI, { model: "gemini-2.0-flash" });

async function run() {
  const chat = model.startChat({
    history: [
      {
        role: "user",
        parts: [{ text: "Hello, I have 2 dogs in my house." }],
      },
      {
        role: "model",
        parts: [{ text: "Great to meet you. What would you like to know?" }],
      },
    ],
    generationConfig: {
      maxOutputTokens: 100,
    },
  });

  const msg = "How many paws are in my house?";

  const result = await chat.sendMessage(msg);

  const response = await result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

Anda dapat memanggil startChat() dan sendMessage() untuk mengirim pesan pengguna baru:

import 'package:firebase_vertexai/firebase_vertexai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Vertex AI service and create a `GenerativeModel` instance
// Specify a model that supports your use case
final model =
      FirebaseVertexAI.instance.generativeModel(model: 'gemini-2.0-flash');

final chat = model.startChat();
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

final response = await chat.sendMessage(prompt);
print(response.text);

Pelajari cara memilih model dan secara opsional lokasi yang sesuai untuk kasus penggunaan dan aplikasi Anda.

Menampilkan respons secara bertahap

Pastikan Anda telah menyelesaikan bagian Sebelum memulai dalam panduan ini sebelum mencoba contoh ini.

Anda dapat mencapai interaksi yang lebih cepat dengan tidak menunggu seluruh hasil dari pembuatan model, dan sebagai gantinya menggunakan streaming untuk menangani hasil sebagian. Untuk melakukan streaming respons, panggil sendMessageStream().



Kamu bisa apa lagi?

  • Pelajari cara menghitung token sebelum mengirim perintah panjang ke model.
  • Siapkan Cloud Storage for Firebase agar Anda dapat menyertakan file besar dalam permintaan multimodal dan memiliki solusi yang lebih terkelola untuk menyediakan file dalam perintah. File dapat mencakup gambar, PDF, video, dan audio.
  • Mulailah memikirkan persiapan produksi, termasuk menyiapkan Firebase App Check untuk melindungi Gemini API dari penyalahgunaan oleh klien yang tidak sah. Selain itu, pastikan untuk meninjau checklist produksi.

Mencoba kemampuan lain

Pelajari cara mengontrol pembuatan konten

Anda juga dapat bereksperimen dengan perintah dan konfigurasi model menggunakan Vertex AI Studio.

Pelajari lebih lanjut model yang didukung

Pelajari model yang tersedia untuk berbagai kasus penggunaan serta kuota dan harga-nya.


Berikan masukan tentang pengalaman Anda dengan Vertex AI in Firebase