البدء باستخدام Gemini API باستخدام Vertex AI في حِزم تطوير البرامج (SDK) لمنصة Firebase


يوضِّح لك هذا الدليل كيفية البدء في إجراء مكالمات على Vertex AI Gemini API من تطبيقك مباشرةً باستخدام حزمة تطوير البرامج (SDK) Vertex AI in Firebase للنظام الأساسي الذي اخترته

المتطلبات الأساسية

يفترض هذا الدليل أنّك على دراية باستخدام JavaScript لتطوير تطبيقات الويب. لا يرتبط هذا الدليل بإطار العمل.

  • تأكَّد من أنّ بيئة التطوير وتطبيق الويب يستوفيان المتطلّبات التالية:

    • (اختياري) Node.js
    • متصفح ويب حديث
  • (اختياري) اطّلِع على نموذج التطبيق.

    تنزيل نموذج التطبيق

    يمكنك تجربة حزمة تطوير البرامج (SDK) بسرعة، أو الاطّلاع على تنفيذ كامل لحالات الاستخدام المختلفة، أو استخدام نموذج التطبيق إذا لم يكن لديك تطبيق ويب خاص بك. لاستخدام نموذج التطبيق، عليك أولاً ربطه بمشروع على Firebase.

الخطوة 1: إعداد مشروع على Firebase وربط تطبيقك به

إذا كان لديك مشروع على Firebase وتطبيق مرتبط بمنصّة Firebase

  1. في وحدة تحكّم Firebase، انتقِل إلى الإنشاء باستخدام Gemini.

  2. انقر على بطاقة Vertex AI in Firebase لبدء سير عمل يساعدك في إكمال المهام التالية. (لاحظ أنه إذا رأيت علامة تبويب في وحدة التحكم Vertex AI، وتكون هذه المهام مكتملة.)

  3. يمكنك المتابعة إلى الخطوة التالية في هذا الدليل لإضافة حزمة تطوير البرامج (SDK) إلى تطبيقك.

إذا لم يكن لديك مشروع على Firebase وتطبيق مرتبط به


الخطوة 2: إضافة حزمة تطوير البرامج (SDK)

بعد إعداد مشروع Firebase وربط تطبيقك بمنصّة Firebase (يُرجى الاطّلاع على الخطوة السابقة)، يمكنك الآن إضافة حزمة تطوير البرامج (SDK) لنظام التشغيل Vertex AI in Firebase إلى تطبيقك.

توفّر مكتبة Vertex AI in Firebase إمكانية الوصول إلى Vertex AI Gemini API ويتم تضمينها كجزء من حزمة تطوير البرامج (SDK) لJavaScript لمنصة Firebase على الويب

  1. تثبيت حزمة تطوير البرامج (SDK) لـ Firebase JS للويب باستخدام npm:

    npm install firebase
    
  2. إعداد Firebase في تطبيقك:

    import { initializeApp } from "firebase/app";
    
    // TODO(developer) Replace the following with your app's Firebase configuration
    // See: https://firebase.google.com/docs/web/learn-more#config-object
    const firebaseConfig = {
      // ...
    };
    
    // Initialize FirebaseApp
    const firebaseApp = initializeApp(firebaseConfig);
    

الخطوة 3: إعداد خدمة Vertex AI والنموذج التوليدي

قبل أن تتمكّن من إجراء أي طلبات إلى واجهة برمجة التطبيقات، عليك إعداد Vertex AI الخدمة والنموذج التوليدي.

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai-preview";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Initialize the generative model with a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
const model = getGenerativeModel(vertexAI, { model: "gemini-1.5-flash" });

بعد الانتهاء من دليل البدء، تعرَّف على كيفية اختيار نموذج Gemini و (اختياريًا) موقع جغرافي مناسبَين لحالة الاستخدام والتطبيق.

الخطوة 4: طلب Vertex AI Gemini API

بعد ربط تطبيقك بمنصّة Firebase وإضافة حزمة تطوير البرامج (SDK) وبدء استخدام خدمة Vertex AI والنموذج التوليدي، يمكنك الآن استدعاء Vertex AI Gemini API.

يمكنك استخدام generateContent() لإنشاء نص من طلب نصي فقط:

import { initializeApp } from "firebase/app";
import { getVertexAI, getGenerativeModel } from "firebase/vertexai-preview";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Vertex AI service
const vertexAI = getVertexAI(firebaseApp);

// Initialize the generative model with a model that supports your use case
// Gemini 1.5 models are versatile and can be used with all API capabilities
const model = getGenerativeModel(vertexAI, { model: "gemini-1.5-flash" });

// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To generate text output, call generateContent with the text input
  const result = await model.generateContent(prompt);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

ما هي الإجراءات الإضافية التي يمكنك تنفيذها؟

مزيد من المعلومات حول طُرز Gemini

يمكنك معرفة المزيد عن النماذج المتوفّرة لحالات الاستخدام المختلفة و الحصص والأسعار:

تجربة إمكانات أخرى في Gemini API

التعرّف على كيفية التحكّم في إنشاء المحتوى

يمكنك أيضًا تجربة الطلبات وإعدادات النماذج باستخدام Vertex AI Studio.


تقديم ملاحظات حول تجربتك مع Vertex AI in Firebase