На этой странице приведены примеры использования Dataflow для выполнения массовых операций Cloud Firestore в конвейере Apache Beam. Apache Beam поддерживает коннектор для Cloud Firestore . Этот соединитель можно использовать для выполнения пакетных и потоковых операций в Dataflow.
Мы рекомендуем использовать Dataflow и Apache Beam для крупномасштабных рабочих нагрузок по обработке данных.
Коннектор Cloud Firestore для Apache Beam доступен на Java. Дополнительные сведения о коннекторе Cloud Firestore см. в Apache Beam SDK для Java .
Прежде чем начать
Прежде чем читать эту страницу, вы должны быть знакомы с моделью программирования для Apache Beam .
Для запуска примеров необходимо включить Dataflow API .Примеры конвейеров Cloud Firestore
В приведенных ниже примерах показан конвейер, который записывает данные, и конвейер, который считывает и фильтрует данные. Вы можете использовать эти примеры в качестве отправной точки для своих собственных конвейеров.
Запуск примеров конвейеров
Исходный код примеров доступен в репозитории googleapis/java-firestore на GitHub . Чтобы запустить эти примеры, загрузите исходный код и просмотрите README .
Пример конвейера Write
В следующем примере создаются документы в коллекции cities-beam-sample
:
public class ExampleFirestoreBeamWrite { private static final FirestoreOptions FIRESTORE_OPTIONS = FirestoreOptions.getDefaultInstance(); public static void main(String[] args) { runWrite(args, "cities-beam-sample"); } public static void runWrite(String[] args, String collectionId) { // create pipeline options from the passed in arguments PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class); Pipeline pipeline = Pipeline.create(options); RpcQosOptions rpcQosOptions = RpcQosOptions.newBuilder() .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers()) .build(); // create some writes Write write1 = Write.newBuilder() .setUpdate( Document.newBuilder() // resolves to // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/NYC .setName(createDocumentName(collectionId, "NYC")) .putFields("name", Value.newBuilder().setStringValue("New York City").build()) .putFields("state", Value.newBuilder().setStringValue("New York").build()) .putFields("country", Value.newBuilder().setStringValue("USA").build())) .build(); Write write2 = Write.newBuilder() .setUpdate( Document.newBuilder() // resolves to // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/TOK .setName(createDocumentName(collectionId, "TOK")) .putFields("name", Value.newBuilder().setStringValue("Tokyo").build()) .putFields("country", Value.newBuilder().setStringValue("Japan").build()) .putFields("capital", Value.newBuilder().setBooleanValue(true).build())) .build(); // batch write the data pipeline .apply(Create.of(write1, write2)) .apply(FirestoreIO.v1().write().batchWrite().withRpcQosOptions(rpcQosOptions).build()); // run the pipeline pipeline.run().waitUntilFinish(); } private static String createDocumentName(String collectionId, String cityDocId) { String documentPath = String.format( "projects/%s/databases/%s/documents", FIRESTORE_OPTIONS.getProjectId(), FIRESTORE_OPTIONS.getDatabaseId()); return documentPath + "/" + collectionId + "/" + cityDocId; } }
В примере используются следующие аргументы для настройки и запуска конвейера:
GOOGLE_CLOUD_PROJECT=project-id REGION=region TEMP_LOCATION=gs://temp-bucket/temp/ NUM_WORKERS=number-workers MAX_NUM_WORKERS=max-number-workers
Пример конвейера Read
Следующий пример конвейера считывает документы из коллекции cities-beam-sample
, применяет фильтр к документам, в которых в поле country
установлено значение USA
, и возвращает имена соответствующих документов.
public class ExampleFirestoreBeamRead { public static void main(String[] args) { runRead(args, "cities-beam-sample"); } public static void runRead(String[] args, String collectionId) { FirestoreOptions firestoreOptions = FirestoreOptions.getDefaultInstance(); PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class); Pipeline pipeline = Pipeline.create(options); RpcQosOptions rpcQosOptions = RpcQosOptions.newBuilder() .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers()) .build(); pipeline .apply(Create.of(collectionId)) .apply( new FilterDocumentsQuery( firestoreOptions.getProjectId(), firestoreOptions.getDatabaseId())) .apply(FirestoreIO.v1().read().runQuery().withRpcQosOptions(rpcQosOptions).build()) .apply( ParDo.of( // transform each document to its name new DoFn<RunQueryResponse, String>() { @ProcessElement public void processElement(ProcessContext c) { c.output(Objects.requireNonNull(c.element()).getDocument().getName()); } })) .apply( ParDo.of( // print the document name new DoFn<String, Void>() { @ProcessElement public void processElement(ProcessContext c) { System.out.println(c.element()); } })); pipeline.run().waitUntilFinish(); } private static final class FilterDocumentsQuery extends PTransform<PCollection<String>, PCollection<RunQueryRequest>> { private final String projectId; private final String databaseId; public FilterDocumentsQuery(String projectId, String databaseId) { this.projectId = projectId; this.databaseId = databaseId; } @Override public PCollection<RunQueryRequest> expand(PCollection<String> input) { return input.apply( ParDo.of( new DoFn<String, RunQueryRequest>() { @ProcessElement public void processElement(ProcessContext c) { // select from collection "cities-collection-<uuid>" StructuredQuery.CollectionSelector collection = StructuredQuery.CollectionSelector.newBuilder() .setCollectionId(Objects.requireNonNull(c.element())) .build(); // filter where country is equal to USA StructuredQuery.Filter countryFilter = StructuredQuery.Filter.newBuilder() .setFieldFilter( StructuredQuery.FieldFilter.newBuilder() .setField( StructuredQuery.FieldReference.newBuilder() .setFieldPath("country") .build()) .setValue(Value.newBuilder().setStringValue("USA").build()) .setOp(StructuredQuery.FieldFilter.Operator.EQUAL)) .buildPartial(); RunQueryRequest runQueryRequest = RunQueryRequest.newBuilder() .setParent(DocumentRootName.format(projectId, databaseId)) .setStructuredQuery( StructuredQuery.newBuilder() .addFrom(collection) .setWhere(countryFilter) .build()) .build(); c.output(runQueryRequest); } })); } } }
В примере используются следующие аргументы для настройки и запуска конвейера:
GOOGLE_CLOUD_PROJECT=project-id REGION=region TEMP_LOCATION=gs://temp-bucket/temp/ NUM_WORKERS=number-workers MAX_NUM_WORKERS=max-number-workers
Цены
Запуск рабочей нагрузки Cloud Firestore в Dataflow влечет за собой затраты на использование Cloud Firestore и использование Dataflow. За использование потока данных взимается плата за ресурсы, которые используют ваши задания. Подробности см. на странице цен на Dataflow . Цены на Cloud Firestore см. на странице цен .
Что дальше
- Другой пример конвейера см. в разделе «Использование Firestore и Apache Beam для обработки данных» .
- Дополнительные сведения о Dataflow и Apache Beam см. в документации Dataflow .