Funciones aritméticas

Funciones aritméticas

Todas las funciones aritméticas en Cloud Firestore tienen los siguientes comportamientos:

  • Se evalúa como NULL si alguno de los parámetros de entrada es NULL.
  • Se evalúa como NaN si alguno de los argumentos es NaN.
  • Genera un error si se produce un desbordamiento o subdesbordamiento.

Además, cuando una función aritmética toma varios argumentos numéricos de diferentes tipos (por ejemplo, add(5.0, 6)), Cloud Firestore convierte implícitamente los argumentos al tipo de entrada más amplio. Si solo se proporcionan entradas INT32, el tipo de datos que se devuelve será INT64.

Nombre Descripción
ABS Devuelve el valor absoluto de un number.
ADD Devuelve el valor de x + y.
SUBTRACT Devuelve el valor de x - y.
MULTIPLY Devuelve el valor de x * y.
DIVIDE Devuelve el valor de x / y.
MOD Devuelve el resto de la división de x / y.
CEIL Devuelve el límite superior de un number
FLOOR Devuelve el límite inferior de un number
ROUND Redondea un number a places decimales
POW Devuelve el valor de base^exponent.
SQRT Devuelve la raíz cuadrada de un number
EXP Devuelve el número de Euler elevado a la potencia de exponent
LN Devuelve el logaritmo natural de un number
LOG Devuelve el logaritmo de un number
LOG10 Devuelve el logaritmo de un number en base 10
RAND Devuelve un número de punto flotante pseudoaleatorio.

ABS

Sintaxis:

abs[N <: INT32 | INT64 | FLOAT64](number: N) -> N

Descripción:

Devuelve el valor absoluto de un number.

  • Se arroja un error cuando la función desbordaría un valor de INT32 o INT64.

Ejemplos:

número abs(number)
10 10
-10 10
10L 10L
-0.0 0.0
10.5 10.5
-10.5 10.5
-231 [error]
-263 [error]

AGREGAR

Sintaxis:

add[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descripción:

Devuelve el valor de x + y.

Ejemplos:

x y add(x, y)
20 3 23
10.0 1 11.0
22.5 2.0 24.5
INT64.MAX 1 [error]
INT64.MIN -1 [error]

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("soldBooks").add(field("unsoldBooks")).as("totalBooks"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("soldBooks").add(Field("unsoldBooks")).as("totalBooks")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.add(field("soldBooks"), field("unsoldBooks")).alias("totalBooks"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.add(field("soldBooks"), field("unsoldBooks")).alias("totalBooks"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("soldBooks").add(Field.of("unsoldBooks")).as_("totalBooks"))
    .execute()
)

SUBTRACT

Sintaxis:

subtract[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descripción:

Devuelve el valor de x - y.

Ejemplos:

x y subtract(x, y)
20 3 17
10.0 1 9.0
22.5 2.0 20.5
INT64.MAX -1 [error]
INT64.MIN 1 [error]

Web

const storeCredit = 7;
const result = await execute(db.pipeline()
  .collection("books")
  .select(field("price").subtract(constant(storeCredit)).as("totalCost"))
);
Swift
let storeCredit = 7
let result = try await db.pipeline()
  .collection("books")
  .select([Field("price").subtract(Constant(storeCredit)).as("totalCost")])
  .execute()

Kotlin

val storeCredit = 7
val result = db.pipeline()
    .collection("books")
    .select(Expression.subtract(field("price"), storeCredit).alias("totalCost"))
    .execute()

Java

int storeCredit = 7;
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.subtract(field("price"), storeCredit).alias("totalCost"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

store_credit = 7
result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("price").subtract(store_credit).as_("totalCost"))
    .execute()
)

MULTIPLY

Sintaxis:

multiply[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descripción:

Devuelve el valor de x * y.

Ejemplos:

x y multiply(x, y)
20 3 60
10.0 1 10.0
22.5 2.0 45.0
INT64.MAX 2 [error]
INT64.MIN 2 [error]
FLOAT64.MAX FLOAT64.MAX +inf

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("price").multiply(field("soldBooks")).as("revenue"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("price").multiply(Field("soldBooks")).as("revenue")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("price"), field("soldBooks")).alias("revenue"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("price"), field("soldBooks")).alias("revenue"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("price").multiply(Field.of("soldBooks")).as_("revenue"))
    .execute()
)

DIVIDE

Sintaxis:

divide[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descripción:

Devuelve el valor de x / y. La división de números enteros se trunca.

Ejemplos:

x y divide(x, y)
20 3 6
10.0 3 3.333…
22.5 2 11.25
10 0 [error]
1.0 0.0 +inf
-1.0 0.0 -inf

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("ratings").divide(field("soldBooks")).as("reviewRate"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("ratings").divide(Field("soldBooks")).as("reviewRate")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.divide(field("ratings"), field("soldBooks")).alias("reviewRate"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.divide(field("ratings"), field("soldBooks")).alias("reviewRate"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("ratings").divide(Field.of("soldBooks")).as_("reviewRate"))
    .execute()
)

MOD

Sintaxis:

mod[N <: INT32 | INT64 | FLOAT64](x: N, y: N) -> N

Descripción:

Devuelve el resto de x / y.

  • Muestra un error cuando y es cero para los tipos de números enteros (INT64).
  • Devuelve NaN cuando y es cero para los tipos de números de punto flotante (FLOAT64).

Ejemplos:

x y mod(x, y)
20 3 2
-10 3 -1
10 -3 1
-10 -3 -1
10 1 0
22.5 2 0.5
22.5 0.0 NaN
25 0 [error]

Web

const displayCapacity = 1000;
const result = await execute(db.pipeline()
  .collection("books")
  .select(field("unsoldBooks").mod(constant(displayCapacity)).as("warehousedBooks"))
);
Swift
let displayCapacity = 1000
let result = try await db.pipeline()
  .collection("books")
  .select([Field("unsoldBooks").mod(Constant(displayCapacity)).as("warehousedBooks")])
  .execute()

Kotlin

val displayCapacity = 1000
val result = db.pipeline()
    .collection("books")
    .select(Expression.mod(field("unsoldBooks"), displayCapacity).alias("warehousedBooks"))
    .execute()

Java

int displayCapacity = 1000;
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.mod(field("unsoldBooks"), displayCapacity).alias("warehousedBooks"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

display_capacity = 1000
result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("unsoldBooks").mod(display_capacity).as_("warehousedBooks"))
    .execute()
)

CEIL

Sintaxis:

ceil[N <: INT32 | INT64 | FLOAT64](number: N) -> N

Descripción:

Devuelve el valor numérico más pequeño que no es menor que number.

Ejemplos:

número ceil(number)
20 20
10 10
0 0
24L 24L
-0.4 -0.0
0.4 1.0
22.5 23.0
+inf +inf
-inf -inf

Web

const booksPerShelf = 100;
const result = await execute(db.pipeline()
  .collection("books")
  .select(
    field("unsoldBooks").divide(constant(booksPerShelf)).ceil().as("requiredShelves")
  )
);
Swift
let booksPerShelf = 100
let result = try await db.pipeline()
  .collection("books")
  .select([
    Field("unsoldBooks").divide(Constant(booksPerShelf)).ceil().as("requiredShelves")
  ])
  .execute()

Kotlin

val booksPerShelf = 100
val result = db.pipeline()
    .collection("books")
    .select(
        Expression.divide(field("unsoldBooks"), booksPerShelf).ceil().alias("requiredShelves")
    )
    .execute()

Java

int booksPerShelf = 100;
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(
        Expression.divide(field("unsoldBooks"), booksPerShelf).ceil().alias("requiredShelves")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

books_per_shelf = 100
result = (
    client.pipeline()
    .collection("books")
    .select(
        Field.of("unsoldBooks")
        .divide(books_per_shelf)
        .ceil()
        .as_("requiredShelves")
    )
    .execute()
)

FLOOR

Sintaxis:

floor[N <: INT32 | INT64 | FLOAT64](number: N) -> N

Descripción:

Devuelve el valor numérico más grande que no es mayor que number.

Ejemplos:

número floor(number)
20 20
10 10
0 0
2147483648 2147483648
-0.4 -1.0
0.4 0.0
22.5 22.0
+inf +inf
-inf -inf

Web

const result = await execute(db.pipeline()
  .collection("books")
  .addFields(
    field("wordCount").divide(field("pages")).floor().as("wordsPerPage")
  )
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .addFields([
    Field("wordCount").divide(Field("pages")).floor().as("wordsPerPage")
  ])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .addFields(
        Expression.divide(field("wordCount"), field("pages")).floor().alias("wordsPerPage")
    )
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .addFields(
        Expression.divide(field("wordCount"), field("pages")).floor().alias("wordsPerPage")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .add_fields(
        Field.of("wordCount").divide(Field.of("pages")).floor().as_("wordsPerPage")
    )
    .execute()
)

ROUND

Sintaxis:

round[N <: INT32 | INT64 | FLOAT64 | DECIMAL128](number: N) -> N
round[N <: INT32 | INT64 | FLOAT64 | DECIMAL128](number: N, places: INT64) -> N

Descripción:

Redondea places dígitos de un number. Redondea los dígitos a la derecha del punto decimal si places es positivo y a la izquierda del punto decimal si es negativo.

  • Si solo se proporciona number, se redondea al valor entero más cercano.
  • Redondea en dirección opuesta al cero en los casos de punto medio.
  • Se arroja un error si el redondeo con un valor de places negativo genera un desbordamiento.

Ejemplos:

número decimales round(number, places)
15.5 0 16.0
-15.5 0 -16.0
15 1 15
15 0 15
15 -1 20
15 -2 0
15.48924 1 15.5
231-1 -1 [error]
263-1L -1 [error]

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("soldBooks").multiply(field("price")).round().as("partialRevenue"))
  .aggregate(field("partialRevenue").sum().as("totalRevenue"))
  );
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("soldBooks").multiply(Field("price")).round().as("partialRevenue")])
  .aggregate([Field("partialRevenue").sum().as("totalRevenue")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("soldBooks"), field("price")).round().alias("partialRevenue"))
    .aggregate(AggregateFunction.sum("partialRevenue").alias("totalRevenue"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(Expression.multiply(field("soldBooks"), field("price")).round().alias("partialRevenue"))
    .aggregate(AggregateFunction.sum("partialRevenue").alias("totalRevenue"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(
        Field.of("soldBooks")
        .multiply(Field.of("price"))
        .round()
        .as_("partialRevenue")
    )
    .aggregate(Field.of("partialRevenue").sum().as_("totalRevenue"))
    .execute()
)

POW

Sintaxis:

pow(base: FLOAT64, exponent: FLOAT64) -> FLOAT64

Descripción:

Devuelve el valor de base elevado a la potencia de exponent.

  • Muestra un error si base <= 0 y exponent son negativos.

  • Para cualquier exponent, pow(1, exponent) es 1.

  • Para cualquier base, pow(base, 0) es 1.

Ejemplos:

base exponente pow(base, exponent)
2 3 8.0
2 -3 0.125
+inf 0 1.0
1 +inf 1.0
-1 0.5 [error]
0 -1 [error]

Web

const googleplex = { latitude: 37.4221, longitude: 122.0853 };
const result = await execute(db.pipeline()
  .collection("cities")
  .addFields(
    field("lat").subtract(constant(googleplex.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    field("lng").subtract(constant(googleplex.longitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  )
  .select(
    field("latitudeDifference").add(field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  )
);
Swift
let googleplex = CLLocation(latitude: 37.4221, longitude: 122.0853)
let result = try await db.pipeline()
  .collection("cities")
  .addFields([
    Field("lat").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    Field("lng").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  ])
  .select([
    Field("latitudeDifference").add(Field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  ])
  .execute()

Kotlin

val googleplex = GeoPoint(37.4221, -122.0853)
val result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.latitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.longitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute()

Java

GeoPoint googleplex = new GeoPoint(37.4221, -122.0853);
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.getLatitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.getLongitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

googleplexLat = 37.4221
googleplexLng = -122.0853
result = (
    client.pipeline()
    .collection("cities")
    .add_fields(
        Field.of("lat")
        .subtract(googleplexLat)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("latitudeDifference"),
        Field.of("lng")
        .subtract(googleplexLng)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("longitudeDifference"),
    )
    .select(
        Field.of("latitudeDifference")
        .add(Field.of("longitudeDifference"))
        .sqrt()
        # Inaccurate for large distances or close to poles
        .as_("approximateDistanceToGoogle")
    )
    .execute()
)

SQRT

Sintaxis:

sqrt[N <: FLOAT64 | DECIMAL128](number: N) -> N

Descripción:

Devuelve la raíz cuadrada de un number.

  • Muestra un error si number es negativo.

Ejemplos:

número sqrt(number)
25 5.0
12.002 3.464…
0.0 0.0
NaN NaN
+inf +inf
-inf [error]
x < 0 [error]

Web

const googleplex = { latitude: 37.4221, longitude: 122.0853 };
const result = await execute(db.pipeline()
  .collection("cities")
  .addFields(
    field("lat").subtract(constant(googleplex.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    field("lng").subtract(constant(googleplex.longitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  )
  .select(
    field("latitudeDifference").add(field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  )
);
Swift
let googleplex = CLLocation(latitude: 37.4221, longitude: 122.0853)
let result = try await db.pipeline()
  .collection("cities")
  .addFields([
    Field("lat").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("latitudeDifference"),
    Field("lng").subtract(Constant(googleplex.coordinate.latitude))
      .multiply(111 /* km per degree */)
      .pow(2)
      .as("longitudeDifference")
  ])
  .select([
    Field("latitudeDifference").add(Field("longitudeDifference")).sqrt()
      // Inaccurate for large distances or close to poles
      .as("approximateDistanceToGoogle")
  ])
  .execute()

Kotlin

val googleplex = GeoPoint(37.4221, -122.0853)
val result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.latitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.longitude)
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute()

Java

GeoPoint googleplex = new GeoPoint(37.4221, -122.0853);
Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("cities")
    .addFields(
        field("lat").subtract(googleplex.getLatitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("latitudeDifference"),
        field("lng").subtract(googleplex.getLongitude())
            .multiply(111 /* km per degree */)
            .pow(2)
            .alias("longitudeDifference")
    )
    .select(
        field("latitudeDifference").add(field("longitudeDifference")).sqrt()
            // Inaccurate for large distances or close to poles
            .alias("approximateDistanceToGoogle")
    )
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

googleplexLat = 37.4221
googleplexLng = -122.0853
result = (
    client.pipeline()
    .collection("cities")
    .add_fields(
        Field.of("lat")
        .subtract(googleplexLat)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("latitudeDifference"),
        Field.of("lng")
        .subtract(googleplexLng)
        .multiply(111)  # km per degree
        .pow(2)
        .as_("longitudeDifference"),
    )
    .select(
        Field.of("latitudeDifference")
        .add(Field.of("longitudeDifference"))
        .sqrt()
        # Inaccurate for large distances or close to poles
        .as_("approximateDistanceToGoogle")
    )
    .execute()
)

EXP

Sintaxis:

exp(exponent: FLOAT64) -> FLOAT64

Descripción:

Devuelve el valor del número de Euler elevado a la potencia de exponent, también llamado función exponencial natural.

Ejemplos:

exponente exp(exponent)
0.0 1.0
10 e^10 (FLOAT64)
+inf +inf
-inf 0

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("rating").exp().as("expRating"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("rating").exp().as("expRating")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(field("rating").exp().alias("expRating"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(field("rating").exp().alias("expRating"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("rating").exp().as_("expRating"))
    .execute()
)

LN

Sintaxis:

ln(number: FLOAT64) -> FLOAT64

Descripción:

Devuelve el logaritmo natural de number. Esta función es equivalente a log(number).

Ejemplos:

número ln(number)
1 0.0
2L 0.693...
1.0 0.0
e (FLOAT64) 1.0
-inf NaN
+inf +inf
x <= 0 [error]

Web

const result = await execute(db.pipeline()
  .collection("books")
  .select(field("rating").ln().as("lnRating"))
);
Swift
let result = try await db.pipeline()
  .collection("books")
  .select([Field("rating").ln().as("lnRating")])
  .execute()

Kotlin

val result = db.pipeline()
    .collection("books")
    .select(field("rating").ln().alias("lnRating"))
    .execute()

Java

Task<Pipeline.Snapshot> result = db.pipeline()
    .collection("books")
    .select(field("rating").ln().alias("lnRating"))
    .execute();
    
Python
from google.cloud.firestore_v1.pipeline_expressions import Field

result = (
    client.pipeline()
    .collection("books")
    .select(Field.of("rating").ln().as_("lnRating"))
    .execute()
)

LOG

Sintaxis:

log(number: FLOAT64, base: FLOAT64) -> FLOAT64
log(number: FLOAT64) -> FLOAT64

Descripción:

Devuelve el logaritmo de number en base base.

  • Si solo se proporciona number, devuelve el logaritmo de number en base (sinónimo de ln(number)).

Ejemplos:

número base log(number, base)
100 10 2.0
-inf Numeric NaN
Numeric. +inf NaN
number <= 0 Numeric [error]
Numeric base <= 0 [error]
Numeric 1.0 [error]

LOG10

Sintaxis:

log10(x: FLOAT64) -> FLOAT64

Descripción:

Devuelve el logaritmo de number en base 10.

Ejemplos:

número log10(number)
100 2.0
-inf NaN
+inf +inf
x <= 0 [error]

RAND

Sintaxis:

rand() -> FLOAT64

Descripción:

Devuelve un número de punto flotante pseudoaleatorio, elegido de forma uniforme entre 0.0 (inclusive) y 1.0 (exclusive).