השאילתה סורקת 95,000 רשומות באינדקס רק כדי להחזיר חמישה מסמכים. מכיוון שתנאי השאילתה לא מתקיים, המערכת קוראת מספר גדול של רשומות באינדקס, אבל מסננת אותן.
אפשר להסיק ממומחיות בתחום שרוב העובדים יהיו בעלי ניסיון מסוים לפחות, אבל רק למעטים יהיה שכר של יותר מ-100,000. מהתובנה הזו אפשר להבין שההגבלה salary סלקטיבית יותר מההגבלה experience. כדי להשפיע על האינדקס שבו Cloud Firestore משתמש כדי להריץ את השאילתה, מציינים פסקה orderBy שמסדרת את האילוץ salary לפני האילוץ experience.
כשמשתמשים במפורש בסעיף orderBy() כדי להוסיף את התנאים, Cloud Firestore משתמש באינדקס (salary ASC, experience ASC) כדי להריץ את השאילתה.
בשאילתה הזו, הסלקטיביות של מסנן הטווח הראשון גבוהה יותר בהשוואה לשאילתה הקודמת, ולכן השאילתה פועלת מהר יותר ויעילה יותר מבחינת עלות.
[[["התוכן קל להבנה","easyToUnderstand","thumb-up"],["התוכן עזר לי לפתור בעיה","solvedMyProblem","thumb-up"],["סיבה אחרת","otherUp","thumb-up"]],[["חסרים לי מידע או פרטים","missingTheInformationINeed","thumb-down"],["התוכן מורכב מדי או עם יותר מדי שלבים","tooComplicatedTooManySteps","thumb-down"],["התוכן לא עדכני","outOfDate","thumb-down"],["בעיה בתרגום","translationIssue","thumb-down"],["בעיה בדוגמאות/בקוד","samplesCodeIssue","thumb-down"],["סיבה אחרת","otherDown","thumb-down"]],["עדכון אחרון: 2025-09-06 (שעון UTC)."],[],[],null,["\u003cbr /\u003e\n\nThis page provides examples of indexing strategy that you can use for queries\nwith range and inequality filters on multiple fields to create an efficient\nquery experience.\n\nBefore you optimize your queries, read about [the related concepts](/docs/firestore/query-data/multiple-range-fields).\n\nOptimize queries with Query Explain\n\nTo determine if your query and indexes are optimal, you can use [Query\nExplain](/docs/firestore/query-explain) to get the query plan summary and execution statistics\nof the query: \n\nJava \n\n Query q = db.collection(\"employees\").whereGreaterThan(\"salary\",\n 100000).whereGreaterThan(\"experience\", 0);\n\n ExplainResults\u003cQuerySnapshot\u003e explainResults = q.explain(ExplainOptions.builder().analyze(true).build()).get();\n ExplainMetrics metrics = explainResults.getMetrics();\n\n PlanSummary planSummary = metrics.getPlanSummary();\n ExecutionStats executionStats = metrics.getExecutionStats();\n\n System.out.println(planSummary.getIndexesUsed());\n System.out.println(stats.getResultsReturned());\n System.out.println(stats.getExecutionDuration());\n System.out.println(stats.getReadOperations());\n System.out.println(stats.getDebugStats());\n\nNode.js \n\n let q = db.collection(\"employees\")\n .where(\"salary\", \"\u003e\", 100000)\n .where(\"experience\", \"\u003e\",0);\n\n let options = { analyze : 'true' };\n let explainResults = await q.explain(options);\n\n let planSummary = explainResults.metrics.planSummary;\n let stats = explainResults.metrics.executionStats;\n\n console.log(planSummary);\n console.log(stats);\n\nThe following example shows how the use of correct index ordering reduces the\nnumber of index entries that Cloud Firestore scans.\n\nSimple queries\n\nWith the [earlier example](/docs/firestore/query-data/multiple-range-fields#indexing_considerations) of a collection of employees, the simple query\nthat runs with the `(experience ASC, salary ASC)` index is as follows: \n\nJava \n\n db.collection(\"employees\")\n .whereGreaterThan(\"salary\", 100000)\n .whereGreaterThan(\"experience\", 0)\n .orderBy(\"experience\")\n .orderBy(\"salary\");\n\nThe query scans 95000 index entries only to return five documents. Since the query\npredicate isn't satisfied, a large number of index entries are read but are\nfiltered out. \n\n```scilab\n// Output query planning info\n{\n \"indexesUsed\": [\n {\n \"properties\": \"(experience ASC, salary ASC, __name__ ASC)\",\n \"query_scope\": \"Collection\"\n }\n ],\n\n // Output Query Execution Stats\n \"resultsReturned\": \"5\",\n \"executionDuration\": \"2.5s\",\n \"readOperations\": \"100\",\n \"debugStats\": {\n \"index_entries_scanned\": \"95000\",\n \"documents_scanned\": \"5\",\n \"billing_details\": {\n \"documents_billable\": \"5\",\n \"index_entries_billable\": \"95000\",\n \"small_ops\": \"0\",\n \"min_query_cost\": \"0\"\n }\n }\n}\n```\n\nYou can infer from domain expertise that most employees will have at least some\nexperience but few will have a salary that is more than 100000. Given this\ninsight, you can see that the `salary` constraint is more selective than the\n`experience` constraint. To influence the index that Cloud Firestore uses to\nexecute the query, specify an `orderBy` clause that orders the `salary`\nconstraint before the `experience` constraint. \n\nJava \n\n db.collection(\"employees\")\n .whereGreaterThan(\"salary\", 100000)\n .whereGreaterThan(\"experience\", 0)\n .orderBy(\"salary\")\n .orderBy(\"experience\");\n\nWhen you explicitly use the `orderBy()` clause to add the predicates,\nCloud Firestore uses the `(salary ASC, experience ASC)` index to run the query.\nSince the selectivity of the first range filter is higher in this query\ncompared to the earlier query, the query runs faster and is more cost efficient. \n\n```scilab\n// Output query planning info\n{\n \"indexesUsed\": [\n {\n \"properties\": \"(salary ASC, experience ASC, __name__ ASC)\",\n \"query_scope\": \"Collection\"\n }\n ],\n\n // Output Query Execution Stats\n \"resultsReturned\": \"5\",\n \"executionDuration\": \"0.2s\",\n \"readOperations\": \"6\",\n \"debugStats\": {\n \"index_entries_scanned\": \"1000\",\n \"documents_scanned\": \"5\",\n \"billing_details\": {\n \"documents_billable\": \"5\",\n \"index_entries_billable\": \"1000\",\n \"small_ops\": \"0\",\n \"min_query_cost\": \"0\"\n }\n }\n}\n```\n\nWhat's next\n\n- Learn about [Query Explain](/docs/firestore/query-explain).\n- Learn about [indexing best practices](/docs/firestore/query-data/index-overview#indexing_best_practices)."]]