많은 앱에는 물리적 위치에 따라 색인이 생성되는 문서가 있습니다. 예를 들어 앱에서 사용자가 현재 위치 근처의 매장을 찾아볼 수 있습니다.
Cloud Firestore는 복합 쿼리당 단일 범위 절만 허용합니다. 즉, 위도와 경도를 별도의 필드로 저장하고 경계 상자를 쿼리하는 것만으로는 지역 쿼리를 수행할 수 없습니다.
솔루션: Geohash
Geohash는 (latitude, longitude)
쌍을 단일 Base32 문자열로 인코딩하기 위한 시스템입니다. Geohash 시스템에서 세계는 직사각형 그리드로 나뉩니다.
Geohash 문자열의 각 문자는 프리픽스 해시의 32개 구획 중 하나를 지정합니다. 예를 들어 Geohash abcd
는 더 큰 Geohash abc
내에 완전히 포함된 32개의 4자 해시 중 하나입니다.
두 해시 간의 공유 프리픽스가 길수록 서로 더 가까워집니다. 예를 들어 abcdef
는 abcdff
보다 abcdeg
에 더 가깝습니다. 그러나 그 역은 반드시 성립하지 않습니다. 매우 다른 Geohash를 가진 두 영역도 서로 매우 가까울 수 있습니다.
Geohash를 사용하면 효율적으로 Cloud Firestore에서 위치별로 문서를 저장하고 쿼리할 수 있으며 단일 색인 생성 필드만 있으면 됩니다.
도우미 라이브러리 설치
Geohash를 만들고 파싱하는 작업에는 복잡한 수학 함수가 포함되기 때문에 Android, Apple, 웹에서 가장 어려운 부분을 추상화하는 도우미 라이브러리가 개발되었습니다.
웹
// Install from NPM. If you prefer to use a static .js file visit
// https://github.com/firebase/geofire-js/releases and download
// geofire-common.min.js from the latest version
npm install --save geofire-common
Swift
Kotlin+KTX
// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.2.0'
Java
// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.1.0'
Geohash 저장
위치별로 색인을 생성하려는 각 문서에 대해 Geohash 필드를 저장해야 합니다.
웹
// Compute the GeoHash for a lat/lng point const lat = 51.5074; const lng = 0.1278; const hash = geofire.geohashForLocation([lat, lng]); // Add the hash and the lat/lng to the document. We will use the hash // for queries and the lat/lng for distance comparisons. const londonRef = db.collection('cities').doc('LON'); londonRef.update({ geohash: hash, lat: lat, lng: lng }).then(() => { // ... });
Swift
// Compute the GeoHash for a lat/lng point let latitude = 51.5074 let longitude = 0.12780 let location = CLLocationCoordinate2D(latitude: latitude, longitude: longitude) let hash = GFUtils.geoHash(forLocation: location) // Add the hash and the lat/lng to the document. We will use the hash // for queries and the lat/lng for distance comparisons. let documentData: [String: Any] = [ "geohash": hash, "lat": latitude, "lng": longitude ] let londonRef = db.collection("cities").document("LON") londonRef.updateData(documentData) { error in // ... }
Kotlin+KTX
// Compute the GeoHash for a lat/lng point val lat = 51.5074 val lng = 0.1278 val hash = GeoFireUtils.getGeoHashForLocation(GeoLocation(lat, lng)) // Add the hash and the lat/lng to the document. We will use the hash // for queries and the lat/lng for distance comparisons. val updates: MutableMap<String, Any> = mutableMapOf( "geohash" to hash, "lat" to lat, "lng" to lng, ) val londonRef = db.collection("cities").document("LON") londonRef.update(updates) .addOnCompleteListener { // ... }
Java
// Compute the GeoHash for a lat/lng point double lat = 51.5074; double lng = 0.1278; String hash = GeoFireUtils.getGeoHashForLocation(new GeoLocation(lat, lng)); // Add the hash and the lat/lng to the document. We will use the hash // for queries and the lat/lng for distance comparisons. Map<String, Object> updates = new HashMap<>(); updates.put("geohash", hash); updates.put("lat", lat); updates.put("lng", lng); DocumentReference londonRef = db.collection("cities").document("LON"); londonRef.update(updates) .addOnCompleteListener(new OnCompleteListener<Void>() { @Override public void onComplete(@NonNull Task<Void> task) { // ... } });
Geohash 쿼리
Geohash를 사용하면 Geohash 필드의 쿼리 집합을 조인한 다음 일부 거짓양성을 필터링하여 지역 쿼리를 대략적으로 계산할 수 있습니다.
웹
// Find cities within 50km of London const center = [51.5074, 0.1278]; const radiusInM = 50 * 1000; // Each item in 'bounds' represents a startAt/endAt pair. We have to issue // a separate query for each pair. There can be up to 9 pairs of bounds // depending on overlap, but in most cases there are 4. const bounds = geofire.geohashQueryBounds(center, radiusInM); const promises = []; for (const b of bounds) { const q = db.collection('cities') .orderBy('geohash') .startAt(b[0]) .endAt(b[1]); promises.push(q.get()); } // Collect all the query results together into a single list Promise.all(promises).then((snapshots) => { const matchingDocs = []; for (const snap of snapshots) { for (const doc of snap.docs) { const lat = doc.get('lat'); const lng = doc.get('lng'); // We have to filter out a few false positives due to GeoHash // accuracy, but most will match const distanceInKm = geofire.distanceBetween([lat, lng], center); const distanceInM = distanceInKm * 1000; if (distanceInM <= radiusInM) { matchingDocs.push(doc); } } } return matchingDocs; }).then((matchingDocs) => { // Process the matching documents // ... });
Swift
// Find cities within 50km of London let center = CLLocationCoordinate2D(latitude: 51.5074, longitude: 0.1278) let radiusInM: Double = 50 * 1000 // Each item in 'bounds' represents a startAt/endAt pair. We have to issue // a separate query for each pair. There can be up to 9 pairs of bounds // depending on overlap, but in most cases there are 4. let queryBounds = GFUtils.queryBounds(forLocation: center, withRadius: radiusInM) let queries = queryBounds.map { bound -> Query in return db.collection("cities") .order(by: "geohash") .start(at: [bound.startValue]) .end(at: [bound.endValue]) } var matchingDocs = [QueryDocumentSnapshot]() // Collect all the query results together into a single list func getDocumentsCompletion(snapshot: QuerySnapshot?, error: Error?) -> () { guard let documents = snapshot?.documents else { print("Unable to fetch snapshot data. \(String(describing: error))") return } for document in documents { let lat = document.data()["lat"] as? Double ?? 0 let lng = document.data()["lng"] as? Double ?? 0 let coordinates = CLLocation(latitude: lat, longitude: lng) let centerPoint = CLLocation(latitude: center.latitude, longitude: center.longitude) // We have to filter out a few false positives due to GeoHash accuracy, but // most will match let distance = GFUtils.distance(from: centerPoint, to: coordinates) if distance <= radiusInM { matchingDocs.append(document) } } } // After all callbacks have executed, matchingDocs contains the result. Note that this // sample does not demonstrate how to wait on all callbacks to complete. for query in queries { query.getDocuments(completion: getDocumentsCompletion) }
Kotlin+KTX
// Find cities within 50km of London val center = GeoLocation(51.5074, 0.1278) val radiusInM = 50.0 * 1000.0 // Each item in 'bounds' represents a startAt/endAt pair. We have to issue // a separate query for each pair. There can be up to 9 pairs of bounds // depending on overlap, but in most cases there are 4. val bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM) val tasks: MutableList<Task<QuerySnapshot>> = ArrayList() for (b in bounds) { val q = db.collection("cities") .orderBy("geohash") .startAt(b.startHash) .endAt(b.endHash) tasks.add(q.get()) } // Collect all the query results together into a single list Tasks.whenAllComplete(tasks) .addOnCompleteListener { val matchingDocs: MutableList<DocumentSnapshot> = ArrayList() for (task in tasks) { val snap = task.result for (doc in snap!!.documents) { val lat = doc.getDouble("lat")!! val lng = doc.getDouble("lng")!! // We have to filter out a few false positives due to GeoHash // accuracy, but most will match val docLocation = GeoLocation(lat, lng) val distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center) if (distanceInM <= radiusInM) { matchingDocs.add(doc) } } } // matchingDocs contains the results // ... }
Java
// Find cities within 50km of London final GeoLocation center = new GeoLocation(51.5074, 0.1278); final double radiusInM = 50 * 1000; // Each item in 'bounds' represents a startAt/endAt pair. We have to issue // a separate query for each pair. There can be up to 9 pairs of bounds // depending on overlap, but in most cases there are 4. List<GeoQueryBounds> bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM); final List<Task<QuerySnapshot>> tasks = new ArrayList<>(); for (GeoQueryBounds b : bounds) { Query q = db.collection("cities") .orderBy("geohash") .startAt(b.startHash) .endAt(b.endHash); tasks.add(q.get()); } // Collect all the query results together into a single list Tasks.whenAllComplete(tasks) .addOnCompleteListener(new OnCompleteListener<List<Task<?>>>() { @Override public void onComplete(@NonNull Task<List<Task<?>>> t) { List<DocumentSnapshot> matchingDocs = new ArrayList<>(); for (Task<QuerySnapshot> task : tasks) { QuerySnapshot snap = task.getResult(); for (DocumentSnapshot doc : snap.getDocuments()) { double lat = doc.getDouble("lat"); double lng = doc.getDouble("lng"); // We have to filter out a few false positives due to GeoHash // accuracy, but most will match GeoLocation docLocation = new GeoLocation(lat, lng); double distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center); if (distanceInM <= radiusInM) { matchingDocs.add(doc); } } } // matchingDocs contains the results // ... } });
제한사항
위치를 쿼리할 때 Geohash를 사용하면 새로운 기능이 제공되지만 다음과 같은 고유한 제한사항이 있습니다.
- 거짓양성 - Geohash의 쿼리가 정확하지 않으며 클라이언트 측에서 거짓양성 결과를 필터링해야 합니다. 이러한 추가 읽기로 인해 앱에 비용과 지연 시간이 추가됩니다.
- 에지 케이스 - 이 쿼리 메서드는 경도/위도의 거리 추정에 의존합니다. 지점이 북극 또는 남극에 가까워질수록 이 추정치의 정확도는 낮아집니다. 즉, Geohash 쿼리는 극위도에서 더 많은 거짓양성이 나타납니다.