The Firebase plugin provides several integrations with Firebase services:
- Indexers and retrievers using Cloud Firestore vector store
- Trace storage using Cloud Firestore
- Flow deployment using Cloud Functions
- Authorization policies for Firebase Authentication users
- Telemetry export to Google Cloud’s operation suite
Installation
npm i --save @genkit-ai/firebase
Prerequisites
- All Firebase products require a Firebase project. You can create a new project or enable Firebase in an existing Google Cloud project using the Firebase console.
- In addition, if you want to deploy flows to Cloud Functions, you must upgrade your project to the Blaze pay-as-you-go plan.
- If you want to run code locally that exports telemetry, you need the Google Cloud CLI tool installed.
Configuration
Project ID
To use this plugin, specify it when you initialize Genkit:
import { genkit } from 'genkit';
import { firebase } from '@genkit-ai/firebase';
const ai = genkit({
plugins: [firebase({ projectId: "your-firebase-project" })],
});
The plugin requires you to specify your Firebase project ID. You can specify your Firebase project ID in either of the following ways:
Set
projectId
in thefirebase()
configuration object.Set the
GCLOUD_PROJECT
environment variable. If you're running your flow from a Google Cloud environment (Cloud Functions, Cloud Run, and so on),GCLOUD_PROJECT
is automatically set to the project ID of the environment.If you set
GCLOUD_PROJECT
, you can omit the configuration parameter:firebase()
Credentials
To provide Firebase credentials, you also need to set up Google Cloud Application Default Credentials. To specify your credentials:
If you're running your flow from a Google Cloud environment (Cloud Functions, Cloud Run, and so on), this is set automatically.
For other environments:
- Generate service account credentials for your Firebase project and download the JSON key file. You can do so on the Service account page of the Firebase console.
- Set the environment variable
GOOGLE_APPLICATION_CREDENTIALS
to the file path of the JSON file that contains your service account key, or you can set the environment variableGCLOUD_SERVICE_ACCOUNT_CREDS
to the content of the JSON file.
Telemetry
The plugin has a direct dependency on the Google Cloud plugin and thus has provisions to enable telemetry export to Google's Cloud operations suite. To enable telemetry export call enableFirebaseTelemetry()
:
import { enableFirebaseTelemetry } from '@genkit-ai/firebase';
enableFirebaseTelemetry();
Refer the the Google Cloud plugin documentation for all configuration options and the necessary APIs that need to be enabled on the project.
Usage
This plugin provides several integrations with Firebase services, which you can use together or individually.
Cloud Firestore vector store
You can use Cloud Firestore as a vector store for RAG indexing and retrieval.
This section contains information specific to the firebase
plugin and Cloud
Firestore's vector search feature.
See the Retrieval-augmented generation page for a more detailed
discussion on implementing RAG using Genkit.
Using GCLOUD_SERVICE_ACCOUNT_CREDS and Firestore
If you are using service account credentials by passing credentials directly via GCLOUD_SERVICE_ACCOUNT_CREDS
and are also using Firestore as a vector store, you will need to pass credentials directly to the Firestore instance during initialization or the singleton may be initialized with application default credentials depending on plugin initialization order.
import {initializeApp} from "firebase-admin/app";
import {getFirestore} from "firebase-admin/firestore";
const app = initializeApp();
let firestore = getFirestore(app);
if (process.env.GCLOUD_SERVICE_ACCOUNT_CREDS) {
const serviceAccountCreds = JSON.parse(process.env.GCLOUD_SERVICE_ACCOUNT_CREDS);
const authOptions = { credentials: serviceAccountCreds };
firestore.settings(authOptions);
}
Retrievers
The firebase
plugin provides a convenience function for defining Firestore
retrievers, defineFirestoreRetriever()
:
import {defineFirestoreRetriever} from "@genkit-ai/firebase";
import {retrieve} from "@genkit-ai/ai/retriever";
import {initializeApp} from "firebase-admin/app";
import {getFirestore} from "firebase-admin/firestore";
const app = initializeApp();
const firestore = getFirestore(app);
const yourRetrieverRef = defineFirestoreRetriever({
name: "yourRetriever",
firestore: getFirestore(app),
collection: "yourCollection",
contentField: "yourDataChunks",
vectorField: "embedding",
embedder: textEmbeddingGecko, // Import from '@genkit-ai/googleai' or '@genkit-ai/vertexai'
distanceMeasure: "COSINE", // "EUCLIDEAN", "DOT_PRODUCT", or "COSINE" (default)
});
To use it, pass it to the ai.retrieve()
function:
const docs = await ai.retrieve({
retriever: yourRetrieverRef,
query: "look for something",
options: { limit: 5 },
});
Available retrieval options include:
limit
: Specify the number of matching results to return.where
: Field/value pairs to match (e.g.{category: 'food'}
) in addition to vector search.collection
: Override the default collection to search for e.g. subcollection search.
Indexing and Embedding
To populate your Firestore collection, use an embedding generator along with the Admin SDK. For example, the menu ingestion script from the Retrieval-augmented generation page could be adapted for Firestore in the following way:
import { genkit } from 'genkit';
import { vertexAI, textEmbedding004 } from "@genkit-ai/vertexai";
import { applicationDefault, initializeApp } from "firebase-admin/app";
import { FieldValue, getFirestore } from "firebase-admin/firestore";
import { chunk } from "llm-chunk";
import pdf from "pdf-parse";
import { readFile } from "fs/promises";
import path from "path";
// Change these values to match your Firestore config/schema
const indexConfig = {
collection: "menuInfo",
contentField: "text",
vectorField: "embedding",
embedder: textEmbedding004,
};
const ai = genkit({
plugins: [vertexAI({ location: "us-central1" })],
});
const app = initializeApp({ credential: applicationDefault() });
const firestore = getFirestore(app);
export async function indexMenu(filePath: string) {
filePath = path.resolve(filePath);
// Read the PDF.
const pdfTxt = await extractTextFromPdf(filePath);
// Divide the PDF text into segments.
const chunks = await chunk(pdfTxt);
// Add chunks to the index.
await indexToFirestore(chunks);
}
async function indexToFirestore(data: string[]) {
for (const text of data) {
const embedding = await ai.embed({
embedder: indexConfig.embedder,
content: text,
});
await firestore.collection(indexConfig.collection).add({
[indexConfig.vectorField]: FieldValue.vector(embedding),
[indexConfig.contentField]: text,
});
}
}
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
Firestore depends on indexes to provide fast and efficient querying on collections. (Note that "index" here refers to database indexes, and not Genkit's indexer and retriever abstractions.)
The prior example requires the embedding
field to be indexed to
work. To create the index:
Run the
gcloud
command described in the Create a single-field vector index section of the Firestore docs.The command looks like the following:
gcloud alpha firestore indexes composite create --project=your-project-id \ --collection-group=yourCollectionName --query-scope=COLLECTION \ --field-config=vector-config='{"dimension":"768","flat": "{}"}',field-path=yourEmbeddingField
However, the correct indexing configuration depends on the queries you will make and the embedding model you're using.
Alternatively, call
ai.retrieve()
and Firestore will throw an error with the correct command to create the index.
Learn more
- See the Retrieval-augmented generation page for a general discussion on indexers and retrievers in Genkit.
- See Search with vector embeddings in the Cloud Firestore docs for more on the vector search feature.
Cloud Functions
The plugin provides the onFlow()
constructor, which creates a flow backed by a
Cloud Functions for Firebase HTTPS-triggered function. These functions conform
to Firebase's
callable function interface and you can use the
Cloud Functions client SDKs
to call them.
import { onFlow, noAuth } from "@genkit-ai/firebase/functions";
export const exampleFlow = onFlow(
ai, // Provide the Genkit instance
{
name: "exampleFlow",
authPolicy: noAuth(), // WARNING: noAuth() creates an open endpoint!
},
async (prompt) => {
// Flow logic goes here.
return response;
}
);
Deploy your flow using the Firebase CLI:
firebase deploy --only functions
The onFlow()
function has some options not present in defineFlow()
:
httpsOptions
: anHttpsOptions
object used to configure your Cloud Function:export const exampleFlow = onFlow( ai, { name: "exampleFlow", httpsOptions: { cors: true, }, // ... }, async (prompt) => { // ... } );
enforceAppCheck
: whentrue
, reject requests with missing or invalid App Check tokens.consumeAppCheckToken
: whentrue
, invalidate the App Check token after verifying it.See Replay protection.
Firebase Auth
This plugin provides a helper function to create authorization policies around Firebase Auth:
import {firebaseAuth} from "@genkit-ai/firebase/auth";
export const exampleFlow = onFlow(
ai,
{
name: "exampleFlow",
authPolicy: firebaseAuth((user) => {
if (!user.email_verified) throw new Error("Requires verification!");
}),
},
async (prompt) => {
// ...
}
);
To define an auth policy, provide firebaseAuth()
with a callback function that
takes a
DecodedIdToken
as its only parameter. In this function, examine the user token and throw an
error if the user fails to meet any of the criteria you want to require.
See Authorization and integrity for a more thorough discussion of this topic.