Ajouter un libellé aux images avec un modèle entraîné AutoML sur Android

Après avoir entraîné votre propre à l'aide d'AutoML Vision Edge, vous pouvez l'utiliser dans votre application pour étiqueter images.

Avant de commencer

  1. Si ce n'est pas déjà fait, Ajoutez Firebase à votre projet Android.
  2. Ajoutez les dépendances pour les bibliothèques Android ML Kit au fichier Gradle de votre module (au niveau de l'application) (généralement app/build.gradle) :
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5'
    }
    

1. Charger le modèle

ML Kit exécute vos modèles générés par AutoML sur l'appareil. Toutefois, vous pouvez configurer ML Kit pour charger votre modèle à distance depuis Firebase, depuis l'espace de stockage local ou les deux.

En hébergeant le modèle sur Firebase, vous pouvez le mettre à jour sans publier de nouvelle version de l'application. Vous pouvez également utiliser Remote Config et A/B Testing pour diffuser dynamiquement différents modèles à différents ensembles d'utilisateurs.

Si vous choisissez de ne fournir le modèle qu'en l'hébergeant avec Firebase et de ne pas le regrouper avec votre application, vous pouvez réduire la taille de téléchargement initiale de votre application. Gardez à l'esprit, cependant, que si le modèle n'est pas regroupé avec votre application, aucune fonctionnalité liée au modèle ne sera disponible tant que votre application ne l'aura pas téléchargé pour la première fois.

En regroupant votre modèle avec votre application, vous pouvez vous assurer que les fonctionnalités ML de votre application continuent de fonctionner lorsque le modèle hébergé par Firebase n'est pas disponible.

Configurer une source de modèle hébergé sur Firebase

Pour utiliser le modèle hébergé à distance, créez un objet FirebaseAutoMLRemoteModel. en spécifiant le nom que vous avez attribué au modèle lors de sa publication:

Java

// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
    new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();

Kotlin+KTX

// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()

Ensuite, démarrez la tâche de téléchargement du modèle, en spécifiant les conditions dans lesquelles que vous souhaitez autoriser le téléchargement. Si le modèle ne figure pas sur l'appareil, ou si un modèle plus récent du modèle est disponible, la tâche téléchargera de manière asynchrone depuis Firebase:

Java

FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
        .requireWifi()
        .build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin+KTX

val conditions = FirebaseModelDownloadConditions.Builder()
    .requireWifi()
    .build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Success.
    }

De nombreuses applications lancent la tâche de téléchargement dans leur code d'initialisation, vous pouvez le faire à tout moment avant d'avoir besoin d'utiliser le modèle.

Configurer la source d'un modèle local

Pour regrouper le modèle avec votre application :

  1. Extrayez le modèle et ses métadonnées à partir de l'archive ZIP que vous avez téléchargée. depuis la console Firebase. Nous vous recommandons d'utiliser les fichiers que vous avez téléchargés sans les modifier (y compris les noms des fichiers).
  2. Incluez votre modèle et ses fichiers de métadonnées dans votre package d'application :

    1. Si vous ne disposez pas d'un dossier d'éléments dans votre projet, créez-en un en effectuant un clic droit sur le dossier app/, puis en cliquant sur New > Folder > Assets Folder (Nouveau > Dossier > Dossier d'éléments).
    2. Créez un sous-dossier dans le dossier des assets pour y placer le modèle. .
    3. Copiez les fichiers model.tflite, dict.txt et manifest.json dans le sous-dossier (les trois fichiers doivent se trouver dans le même dossier).
  3. Ajoutez les éléments suivants au fichier build.gradle de votre application pour vous assurer que Gradle ne compresse pas le fichier de modèle lors de la compilation de l'application :
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
    Le fichier de modèle sera inclus dans le package de l'application et disponible pour ML Kit en tant qu'élément brut.
  4. Créez un objet FirebaseAutoMLLocalModel en spécifiant le chemin d'accès au fichier manifeste du modèle :

    Java

    FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build();
    

    Kotlin+KTX

    val localModel = FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build()
    

Créer un outil de libellé d'image à partir de votre modèle

Après avoir configuré les sources de votre modèle, créez un FirebaseVisionImageLabeler de l'un d'entre eux.

Si vous ne disposez que d'un modèle groupé localement, créez simplement un outil de libellé à partir de votre objet FirebaseAutoMLLocalModel et configurez le seuil de score de confiance que vous souhaitez exiger (voir Évaluer votre modèle) :

Java

FirebaseVisionImageLabeler labeler;
try {
    FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
            new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
                    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                   // to determine an appropriate value.
                    .build();
    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
    // ...
}

Kotlin+KTX

val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)

Si vous disposez d'un modèle hébergé à distance, vous devez vérifier qu'il a été téléchargé avant de l'exécuter. Vous pouvez vérifier l'état du téléchargement du modèle à l'aide de la méthode isModelDownloaded() du gestionnaire de modèles.

Bien que vous ne deviez le confirmer qu'avant d'exécuter l'outil de libellé, si vous disposez à la fois d'un modèle hébergé à distance et d'un modèle groupé localement, il peut être judicieux d'effectuer cette vérification lors de l'instanciation de l'outil de libellé d'image : créez un outil de libellé à partir du modèle distant s'il a été téléchargé, et à partir du modèle local dans le cas contraire.

Java

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
                }
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                FirebaseVisionImageLabeler labeler;
                try {
                    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
                } catch (FirebaseMLException e) {
                    // Error.
                }
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}

Si vous ne disposez que d'un modèle hébergé à distance, vous devez désactiver les fonctionnalités liées au modèle (par exemple, griser ou masquer une partie de votre UI) jusqu'à ce que vous confirmiez que le modèle a été téléchargé. Pour ce faire, rattachez un écouteur à la méthode download() du gestionnaire de modèles:

Java

FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. Préparer l'image d'entrée

Ensuite, pour chaque image à laquelle vous souhaitez ajouter une étiquette, créez un objet FirebaseVisionImage. à l'aide de l'une des options décrites dans cette section, puis transmettez-la à une instance de FirebaseVisionImageLabeler (décrit dans la section suivante).

Vous pouvez créer un objet FirebaseVisionImage à partir d'un objet media.Image, d'un fichier sur l'appareil, d'un tableau d'octets ou d'un objet Bitmap :

  • Pour créer un objet FirebaseVisionImage à partir d'un un objet media.Image, par exemple lors de la capture d'une image à partir d'un l'appareil photo de l'appareil, transmettez l'objet media.Image et l'image la rotation sur FirebaseVisionImage.fromMediaImage().

    Si vous utilisez la bibliothèque CameraX, les classes OnImageCapturedListener et ImageAnalysis.Analyzer calculent la valeur de rotation à votre place. Il vous suffit donc de convertir la rotation en l'une des constantes ROTATION_ de ML Kit avant d'appeler FirebaseVisionImage.fromMediaImage() :

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
    

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }
    

    Si vous n'utilisez pas de bibliothèque d'appareils photo qui vous permet de faire pivoter l'image, peut la calculer à partir de la rotation de l'appareil et de l'orientation de la caméra capteur de l'appareil:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Transmettez ensuite l'objet media.Image et la valeur de rotation à FirebaseVisionImage.fromMediaImage() :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • Pour créer un objet FirebaseVisionImage à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier FirebaseVisionImage.fromFilePath() Cela est utile lorsque vous Utiliser un intent ACTION_GET_CONTENT pour inviter l'utilisateur à sélectionner une image de son application Galerie.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • Pour créer un objet FirebaseVisionImage à partir d'un ByteBuffer ou d'un tableau d'octets, commencez par calculer la rotation de l'image comme décrit ci-dessus pour l'entrée media.Image.

    Ensuite, créez un objet FirebaseVisionImageMetadata. qui contient la hauteur, la largeur, le format d'encodage des couleurs de l'image et rotation:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    Utilisez le tampon ou le tableau, ainsi que l'objet de métadonnées, pour créer un objet FirebaseVisionImage :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • Pour créer un objet FirebaseVisionImage à partir d'un objet Bitmap :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    L'image représentée par l'objet Bitmap doit être à la verticale, sans effectuer de rotation supplémentaire.

3. Exécuter l'outil de libellé d'image

Pour ajouter des libellés aux objets d'une image, transmettez l'objet FirebaseVisionImage à la méthode processImage() de FirebaseVisionImageLabeler.

Java

labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
            @Override
            public void onSuccess(List<FirebaseVisionImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin+KTX

labeler.processImage(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Si le libellé de l'image aboutit, un tableau d'objets FirebaseVisionImageLabel est transmis à l'écouteur de réussite. À partir de chaque objet, vous pouvez obtenir des informations sur une caractéristique reconnue dans l'image.

Exemple :

Java

for (FirebaseVisionImageLabel label: labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
}

Conseils pour améliorer les performances en temps réel

  • Limiter les appels au détecteur. Si un nouveau frame vidéo devient disponible pendant l'exécution du détecteur, supprimez-le.
  • Si vous utilisez la sortie du détecteur pour superposer des éléments graphiques à l'image d'entrée, obtenez d'abord le résultat de ML Kit, puis affichez l'image et superposez-la en une seule étape. Cela vous permet d'afficher sur la surface d'affichage une seule fois pour chaque trame d'entrée.
  • Si vous utilisez l'API Camera2, capturez des images au format ImageFormat.YUV_420_888.

    Si vous utilisez l'ancienne API Camera, capturez des images au format ImageFormat.NV21.