Comece a usar o Kit de ML para reconhecer pontos de referência conhecidos em uma imagem.
Antes de começar
- Adicione o Firebase ao seu projeto para Android, caso ainda não tenha feito isso.
- Adicione as dependências das bibliotecas do Android do Kit de ML ao arquivo
Gradle do módulo (nível do aplicativo) (geralmente
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
-
Se você ainda não ativou APIs baseadas em nuvem para seu projeto, siga estas etapas:
- Abra a página APIs do Kit de ML no console do Firebase.
-
Se você ainda não fez o upgrade de seu projeto para um plano de preços do Blaze, clique em Upgrade para fazer isso. Você só vai receber uma mensagem para fazer upgrade se o projeto não estiver no plano Blaze.
Apenas projetos no nível Blaze podem usar APIs baseadas na nuvem.
- Caso as APIs baseadas na nuvem ainda não estejam ativadas, clique em Ativar APIs baseadas na nuvem.
Configurar o detector de pontos de referência
Por padrão, o detector do Cloud usa a versão STABLE
do modelo
e retorna até 10 resultados. Se você quiser alterar qualquer uma dessas
configurações, especifique-as com um objeto FirebaseVisionCloudDetectorOptions
.
Por exemplo, para alterar as duas configurações padrão, crie um objeto
FirebaseVisionCloudDetectorOptions
como no exemplo a seguir:
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
Kotlin
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Para usar as configurações padrão, use
FirebaseVisionCloudDetectorOptions.DEFAULT
na próxima etapa.
Executar o detector de pontos de referência
Para reconhecer pontos de referência em uma imagem, crie um objetoFirebaseVisionImage
usando Bitmap
, media.Image
, ByteBuffer
, matriz de bytes ou um arquivo
no dispositivo. Em seguida, transmita o objeto FirebaseVisionImage
para o método
detectInImage
do FirebaseVisionCloudLandmarkDetector
.
Crie um objeto
FirebaseVisionImage
usando sua imagem.-
Para criar um objeto
FirebaseVisionImage
usando um objetomedia.Image
, como ao capturar uma imagem da câmera de um dispositivo, transmita o objetomedia.Image
e a rotação da imagem paraFirebaseVisionImage.fromMediaImage()
.Se você usa a biblioteca CameraX, as classes
OnImageCapturedListener
eImageAnalysis.Analyzer
calculam o valor de rotação para você. Basta converter a rotação em uma das constantesROTATION_
do Kit de ML antes de chamarFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Se você não usa uma biblioteca de câmera que ofereça a rotação da imagem, faça o cálculo usando a rotação do dispositivo e a orientação do sensor da câmera:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Em seguida, transmita o objeto
media.Image
e o valor de rotação paraFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Para criar um objeto
FirebaseVisionImage
com base no URI de um arquivo, transmita o contexto do aplicativo e o URI do arquivo paraFirebaseVisionImage.fromFilePath()
. Isso é útil ao usar uma intentACTION_GET_CONTENT
para solicitar que o usuário selecione uma imagem no app de galeria dele.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Para criar um objeto
FirebaseVisionImage
com base em umByteBuffer
ou uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entradamedia.Image
.Em seguida, crie um objeto
FirebaseVisionImageMetadata
que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Use o buffer ou a matriz e o objeto de metadados para criar um objeto
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Para criar um objeto
FirebaseVisionImage
com base em um objetoBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
precisa estar na posição vertical, sem a necessidade de ser girada novamente.
-
Receba uma instância de
FirebaseVisionCloudLandmarkDetector
:Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
Kotlin
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Por fim, transmita a imagem para o método
detectInImage
:Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Ver informações sobre os pontos de referência reconhecidos
Se a operação de reconhecimento de pontos de referência for bem-sucedida, uma lista de objetosFirebaseVisionCloudLandmark
será transmitida ao listener de êxito. Cada objeto
FirebaseVisionCloudLandmark
representa um ponto de referência que foi reconhecido na
imagem. Para cada ponto de referência, é possível receber as coordenadas delimitadoras na imagem de entrada,
o nome do ponto de referência, a latitude e a longitude, o ID da entidade do Mapa de informações
dele (se disponível) e a pontuação de confiança da correspondência. Por exemplo:
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
Kotlin
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Próximas etapas
- Antes de implantar em produção um app que usa uma API do Cloud, é preciso seguir mais algumas etapas para evitar ou atenuar o efeito do acesso não autorizado à API.