Android'deki Makine Öğrenimi Kiti ile Görsellerdeki Metinleri Tanıma

Resimlerdeki metinleri tanımak için Makine Öğrenimi Kiti'ni kullanabilirsiniz. Makine Öğrenimi Kiti resimlerdeki metinlerin tanınması için uygun, genel amaçlı API; örneğin metni tanımak için optimize edilmiş bir API ve sokak işaretinin metni yardımcı olur. Genel amaçlı API'de hem cihaz üzerinde hem bulut tabanlı modeller bulunur. Doküman metni tanıma yalnızca bulut tabanlı bir model olarak kullanılabilir. Bkz. genel bakış bulut modelleri ve cihaz üzerindeki modeller.

Başlamadan önce

  1. Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
  2. Modülünüze ML Kit Android kitaplıkları için bağımlılıkları ekleyin (uygulama düzeyinde) Gradle dosyası (genellikle app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
    
  3. İsteğe bağlı ancak önerilir: Cihaz üzerinde API'yi kullanıyorsanız uygulamanız sonrasında ML modelini cihaza otomatik olarak Google Play Store'dan yüklenir.

    Bunu yapmak için aşağıdaki beyanı uygulamanızın AndroidManifest.xml dosyası:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="ocr" />
      <!-- To use multiple models: android:value="ocr,model2,model3" -->
    </application>
    
    . Yükleme zamanı modeli indirmelerini etkinleştirmezseniz model ilk kez çalıştırıldığında indirilmiş olan telefon numarasıdır. Yaptığınız istekler olmadan hiçbir sonuç döndürmez.
  4. Bulut tabanlı modeli kullanmak istiyorsanız ve henüz etkinleştirmediyseniz bulut tabanlı API'ler kullanmak için aşağıdaki adımları uygulayın:

    1. ML Kit'i açın Firebase konsolunun API'ler sayfasında gösterilir.
    2. Projenizi daha önce Blaze fiyatlandırma planına yükseltmediyseniz Bunun için yeni sürüme geçin. (Yalnızca emin olun.)

      Bulut tabanlı API'ler yalnızca Blaze düzeyindeki projelerde kullanılabilir.

    3. Cloud tabanlı API'ler henüz etkinleştirilmemişse Bulut tabanlı API'leri etkinleştir'i tıklayın. API'ler.
    ziyaret edin.

    Yalnızca cihaz üzerindeki modeli kullanmak istiyorsanız bu adımı atlayabilirsiniz.

Artık resimlerdeki metinleri tanımaya hazırsınız.

Giriş resmi kuralları

  • Makine Öğrenimi Kiti'nin metni doğru bir şekilde tanıması için giriş resimlerinde yeterli piksel verisi ile temsil edilen metin. İdeal olarak, Latince metin, her karakter en az 16x16 piksel olmalıdır. Çince için Her biri Japonca ve Korece metinler (yalnızca bulut tabanlı API'ler tarafından desteklenir) karakter 24x24 piksel olmalıdır. Tüm dillerde genellikle daha doğru olması gerekir.

    Bu nedenle, örneğin, 640x480 boyutunda bir resim, kartvizit taraması için iyi performans bir resim seçin. Üzerine yazdırılmış bir dokümanı taramak için büyük harf kullanıyorsanız 720x1280 piksel boyutunda bir resim gerekebilir.

  • Zayıf resim odağı, metin tanıma doğruluğunu olumsuz etkileyebilir. Uygun değilseniz kabul edilebilir sonuçlar alıyorsanız kullanıcıdan resmi yeniden çekmesini isteyin.

  • Gerçek zamanlı bir uygulamada metinleri tanıyorsanız, giriş resimlerinin genel boyutlarını göz önünde bulundurmak istersiniz. Daha küçük daha hızlı işlenebilir. Bu nedenle, gecikmeyi azaltmak için daha düşük çözünürlükler için (yukarıdaki doğruluk şartlarını göz önünde bulundurarak) ve metnin, resmin mümkün olduğunca büyük bir kısmını kapladığından emin olun. Şunlara da bakabilirsiniz: Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları.


Resimlerdeki metinleri tanıyın

Cihaz üzerinde veya bulut tabanlı bir model kullanarak resimlerdeki metinleri tanımak için: metin tanıyıcıyı aşağıda açıklandığı şekilde çalıştırın.

1. Metin tanıyıcıyı çalıştır

Görüntüdeki metni tanımak için FirebaseVisionImage nesnesi oluşturun bir Bitmap, media.Image, ByteBuffer, bayt dizisi veya için geçerlidir. Ardından, FirebaseVisionImage nesnesini FirebaseVisionTextRecognizer ürününün processImage yöntemi.

  1. Resminizden bir FirebaseVisionImage nesnesi oluşturun.

    • Bir FirebaseVisionImage nesnesi oluşturmak için media.Image nesnesi, örneğin bir media.Image nesnesini ve görüntünün FirebaseVisionImage.fromMediaImage() değerine döndürülüyor.

      URL'yi CameraX kitaplığı, OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini hesaplar gerekir, bu nedenle rotasyonu ML Kit'lerinden birine veya Çağrıdan önce ROTATION_ sabit değer FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Resmin döndürmesini sağlayan bir kamera kitaplığı kullanmıyorsanız cihazın dönüşüne ve kameranın yönüne göre hesaplanabilir cihazdaki sensör:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ardından, media.Image nesnesini ve rotasyon değerini FirebaseVisionImage.fromMediaImage() değerine ayarlayın:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Dosya URI'sinden bir FirebaseVisionImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini FirebaseVisionImage.fromFilePath(). Bu özellik, kullanıcıdan seçim yapmasını istemek için bir ACTION_GET_CONTENT niyeti kullanın galeri uygulamasından bir resim.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Bir FirebaseVisionImage nesnesi oluşturmak için ByteBuffer veya bir bayt dizisi, önce görüntüyü hesaplayın media.Image girişi için yukarıda açıklandığı gibi döndürülmesini sağlayın.

      Ardından, bir FirebaseVisionImageMetadata nesnesi oluşturun yüksekliğini, genişliğini, renk kodlaması biçimini ve ve rotasyon:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Aşağıdakini oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın: FirebaseVisionImage nesne:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Bir FirebaseVisionImage nesnesi oluşturmak için Bitmap nesne:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap nesnesi tarafından temsil edilen resim, dik olmalıdır, ek döndürme gerekmez.

  2. FirebaseVisionTextRecognizer öğesinin bir örneğini alın.

    Cihaz üzerinde modeli kullanmak için:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getOnDeviceTextRecognizer();

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .onDeviceTextRecognizer

    Bulut tabanlı modeli kullanmak için:

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
    

    Kotlin+KTX

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    
  3. Son olarak, resmi processImage yöntemine iletin:

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.processImage(image)
            .addOnSuccessListener { firebaseVisionText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Tanınan metin bloklarındaki metni ayıkla

Metin tanıma işlemi başarılı olursa, FirebaseVisionText nesne başarıyla aktarılacak dinleyicidir. FirebaseVisionText nesnesi, şurada tanınan tam metni içerir: resim ve sıfır veya daha fazla TextBlock nesne.

Her TextBlock, sıfır ya da sıfır içeren dikdörtgen bir metin blokunu temsil eder daha fazla Line nesne. Her Line nesnesi sıfır veya daha fazla içerik içeriyor Kelimeleri ve kelime benzeri kelimeleri temsil eden Element nesneleri öğeler (tarihler, sayılar vb.)

Her TextBlock, Line ve Element nesnesi için metni alabilirsiniz alanda ve bölgenin sınırlayıcı koordinatlarında tanımlanır.

Örneğin:

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları

Metinleri gerçek zamanlı olarak tanımak için cihaz üzerindeki modeli kullanmak istiyorsanız kullanırken en iyi kare hızlarına ulaşmak için şu yönergeleri izleyin:

  • Metin tanıyıcıya yapılan çağrıları kısıtlayın. Yeni bir video karesi metin tanıyıcı çalışırken kullanılabilir durumdaysa çerçeveyi bırakın.
  • Grafikleri üzerine yerleştirmek için metin tanıyıcının çıkışını kullanıyorsanız giriş görüntüsünü kullanın, önce ML Kit'ten sonucu alın ve ardından görüntüyü oluşturun tek bir adımda yapabilirsiniz. Bu şekilde, öğeleri ekran yüzeyinde her giriş karesi için yalnızca bir kez.
  • Camera2 API'sini kullanıyorsanız görüntüleri şurada yakalayın: ImageFormat.YUV_420_888 biçimindedir.

    Eski Kamera API'sini kullanıyorsanız görüntüleri şurada yakalayın: ImageFormat.NV21 biçimindedir.

  • Görüntüleri daha düşük çözünürlükte çekmeyi düşünün. Ancak unutmayın, resim boyutu şartlarına tabidir.

Sonraki adımlar


Belge resimlerindeki metinleri tanıyın

Bir dokümandaki metni tanımak için bulut tabanlı dosyayı yapılandırıp çalıştırın doküman metni tanıyıcıyı kullanın.

Aşağıda açıklanan doküman metni tanıma API'si, Google Cloud Platform'un doküman resimleriyle çalışırken daha kullanışlı olması amaçlanmıştır. Ancak, FirebaseVisionTextRecognizer API tarafından sağlanan arayüzü tercih ederseniz Bunun yerine, bulut (cloud) metnini yapılandırarak dokümanları taramak için kullanabilirsiniz yoğun metin modelini kullanmak için tanıyıcı kullanın.

Doküman metni tanıma API'sini kullanmak için:

1. Metin tanıyıcıyı çalıştır

Bir resimdeki metni tanımak için şu iki kaynaktan bir FirebaseVisionImage nesnesi oluşturun: Bitmap, media.Image, ByteBuffer, bayt dizisi veya cihazdaki bir dosya. Ardından, FirebaseVisionImage nesnesini FirebaseVisionDocumentTextRecognizer ürününün processImage yöntemi.

  1. Resminizden bir FirebaseVisionImage nesnesi oluşturun.

    • Bir FirebaseVisionImage nesnesi oluşturmak için media.Image nesnesi, örneğin bir media.Image nesnesini ve görüntünün FirebaseVisionImage.fromMediaImage() değerine döndürülüyor.

      URL'yi CameraX kitaplığı, OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini hesaplar gerekir, bu nedenle rotasyonu ML Kit'lerinden birine veya Çağrıdan önce ROTATION_ sabit değer FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Resmin döndürmesini sağlayan bir kamera kitaplığı kullanmıyorsanız cihazın dönüşüne ve kameranın yönüne göre hesaplanabilir cihazdaki sensör:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ardından, media.Image nesnesini ve rotasyon değerini FirebaseVisionImage.fromMediaImage() değerine ayarlayın:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Dosya URI'sinden bir FirebaseVisionImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini FirebaseVisionImage.fromFilePath(). Bu özellik, kullanıcıdan seçim yapmasını istemek için bir ACTION_GET_CONTENT niyeti kullanın galeri uygulamasından bir resim.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Bir FirebaseVisionImage nesnesi oluşturmak için ByteBuffer veya bir bayt dizisi, önce görüntüyü hesaplayın media.Image girişi için yukarıda açıklandığı gibi döndürülmesini sağlayın.

      Ardından, bir FirebaseVisionImageMetadata nesnesi oluşturun yüksekliğini, genişliğini, renk kodlaması biçimini ve ve rotasyon:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Aşağıdakini oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın: FirebaseVisionImage nesne:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Bir FirebaseVisionImage nesnesi oluşturmak için Bitmap nesne:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap nesnesi tarafından temsil edilen resim, dik olmalıdır, ek döndürme gerekmez.

  2. Şunun bir örneğini al: FirebaseVisionDocumentTextRecognizer:

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
            .setLanguageHints(listOf("en", "hi"))
            .build()
    val detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options)

  3. Son olarak, resmi processImage yöntemine iletin:

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    detector.processImage(myImage)
            .addOnSuccessListener { firebaseVisionDocumentText ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

2. Tanınan metin bloklarındaki metni ayıkla

Metin tanıma işlemi başarılı olursa, yeni bir FirebaseVisionDocumentText nesnesini tanımlayın. CEVAP FirebaseVisionDocumentText nesnesi, kabul edilen nesnenin yapısını yansıtan bir görüntü ve doküman:

Her Block, Paragraph, Word ve Symbol nesnesi için bölgede tanınan metin ve bölgenin sınırlayıcı koordinatları.

Örneğin:

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

Kotlin+KTX

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Sonraki adımlar