אתה יכול להשתמש ב-ML Kit כדי לתייג אובייקטים שזוהו בתמונה, באמצעות מודל במכשיר או מודל ענן. עיין בסקירה הכללית כדי ללמוד על היתרונות של כל גישה.
לפני שאתה מתחיל
- אם עדיין לא הוספת את Firebase לאפליקציה שלך, עשה זאת על ידי ביצוע השלבים במדריך לתחילת העבודה .
- כלול את ספריות ML Kit ב-Podfile שלך:
pod 'Firebase/MLVision', '6.25.0'
לאחר שתתקין או תעדכן את ה-Pods של הפרויקט שלך, הקפד לפתוח את פרויקט Xcode שלך באמצעות# If using the on-device API: pod 'Firebase/MLVisionLabelModel', '6.25.0'
.xcworkspace
שלו. - באפליקציה שלך, ייבא את Firebase:
מָהִיר
import Firebase
Objective-C
@import Firebase;
אם ברצונך להשתמש במודל מבוסס ענן, ועדיין לא הפעלת את ממשקי API מבוססי הענן עבור הפרויקט שלך, עשה זאת כעת:
- פתח את דף ממשקי API של ML Kit של מסוף Firebase.
אם עדיין לא שדרגת את הפרויקט שלך לתוכנית תמחור Blaze, לחץ על שדרג כדי לעשות זאת. (תתבקש לשדרג רק אם הפרויקט שלך אינו בתוכנית Blaze.)
רק פרויקטים ברמת Blaze יכולים להשתמש בממשקי API מבוססי ענן.
- אם ממשקי API מבוססי ענן עדיין לא מופעלים, לחץ על הפעל ממשקי API מבוססי ענן .
אם ברצונך להשתמש רק בדגם שבמכשיר, תוכל לדלג על שלב זה.
כעת אתה מוכן לתייג תמונות באמצעות דגם במכשיר או מודל מבוסס ענן.
1. הכן את תמונת הקלט
צור אובייקט VisionImage
באמצעות UIImage
או CMSampleBufferRef
.
כדי להשתמש UIImage
:
- במידת הצורך, סובב את התמונה כך
imageOrientation
שלה יהיה.up
. - צור אובייקט
VisionImage
באמצעותUIImage
המסובב כהלכה. אל תציין מטא נתונים כלשהם של סיבוב - יש להשתמש בערך ברירת המחדל,.topLeft
.מָהִיר
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
כדי להשתמש ב- CMSampleBufferRef
:
צור אובייקט
VisionImageMetadata
המציין את הכיוון של נתוני התמונה הכלולים במאגרCMSampleBufferRef
.כדי לקבל את כיוון התמונה:
מָהִיר
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
לאחר מכן, צור את אובייקט המטא נתונים:
מָהִיר
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- צור אובייקט
VisionImage
באמצעות האובייקטCMSampleBufferRef
והמטא נתונים של הסיבוב:מָהִיר
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
2. הגדר והפעל את תווית התמונות
כדי לתייג אובייקטים בתמונה, העבר את האובייקטVisionImage
VisionImageLabeler
processImage()
של VisionImageLabeler.ראשית, קבל מופע של
VisionImageLabeler
.אם ברצונך להשתמש בתווית התמונות במכשיר:
מָהִיר
let labeler = Vision.vision().onDeviceImageLabeler() // Or, to set the minimum confidence required: // let options = VisionOnDeviceImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = Vision.vision().onDeviceImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler *labeler = [[FIRVision vision] onDeviceImageLabeler]; // Or, to set the minimum confidence required: // FIRVisionOnDeviceImageLabelerOptions *options = // [[FIRVisionOnDeviceImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // FIRVisionImageLabeler *labeler = // [[FIRVision vision] onDeviceImageLabelerWithOptions:options];
אם ברצונך להשתמש בתווית תמונת הענן:
מָהִיר
let labeler = Vision.vision().cloudImageLabeler() // Or, to set the minimum confidence required: // let options = VisionCloudImageLabelerOptions() // options.confidenceThreshold = 0.7 // let labeler = Vision.vision().cloudImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler]; // Or, to set the minimum confidence required: // FIRVisionCloudImageLabelerOptions *options = // [[FIRVisionCloudImageLabelerOptions alloc] init]; // options.confidenceThreshold = 0.7; // FIRVisionImageLabeler *labeler = // [[FIRVision vision] cloudImageLabelerWithOptions:options];
לאחר מכן, העבירו את התמונה לשיטת
processImage()
:מָהִיר
labeler.process(image) { labels, error in guard error == nil, let labels = labels else { return } // Task succeeded. // ... }
Objective-C
[labeler processImage:image completion:^(NSArray<FIRVisionImageLabel *> *_Nullable labels, NSError *_Nullable error) { if (error != nil) { return; } // Task succeeded. // ... }];
3. קבל מידע על אובייקטים מסומנים
אם תיוג תמונה יצליח, מערך של אובייקטים שלVisionImageLabel
יועבר למטפל ההשלמה. מכל אובייקט ניתן לקבל מידע על תכונה המוכרת בתמונה.לדוגמה:
מָהִיר
for label in labels {
let labelText = label.text
let entityId = label.entityID
let confidence = label.confidence
}
Objective-C
for (FIRVisionImageLabel *label in labels) {
NSString *labelText = label.text;
NSString *entityId = label.entityID;
NSNumber *confidence = label.confidence;
}
טיפים לשיפור הביצועים בזמן אמת
אם ברצונך לסמן תמונות ביישום בזמן אמת, פעל לפי ההנחיות הבאות כדי להשיג את קצבי המסגרות הטובים ביותר:
- קריאות מצערת לתיוג התמונה. אם מסגרת וידאו חדשה הופכת לזמינה בזמן שמתווית התמונה פועלת, שחרר את המסגרת.
- אם אתה משתמש בפלט של מתווית התמונה כדי לשכב גרפיקה על תמונת הקלט, תחילה קבל את התוצאה מ-ML Kit, ולאחר מכן עבד את התמונה ואת שכבת העל בשלב אחד. על ידי כך, אתה מעבד למשטח התצוגה רק פעם אחת עבור כל מסגרת קלט. ראה את המחלקות previewOverlayView ו- FIRDetectionOverlayView באפליקציה לדוגמה לראווה לדוגמא.
הצעדים הבאים
- לפני שאתה פורס לייצור אפליקציה שמשתמשת ב-Cloud API, עליך לנקוט כמה צעדים נוספים כדי למנוע ולהפחית את ההשפעה של גישה לא מורשית ל-API .