É possível usar o Kit de ML para reconhecer e decodificar códigos de barras.
Antes de começar
- Se você ainda não adicionou o Firebase ao seu app, siga as etapas no guia de iniciação.
- Inclua as bibliotecas do Kit de ML no seu Podfile:
pod 'Firebase/MLVision' pod 'Firebase/MLVisionBarcodeModel'
Depois de instalar ou atualizar os pods do projeto, abra o projeto do Xcode usando o.xcworkspace
. - Importe o Firebase para seu app:
Swift
import Firebase
Objective-C
@import Firebase;
Diretrizes de imagens de entrada
-
Para que o Kit de ML leia códigos de barras com precisão, as imagens de entrada devem conter códigos de barras representados por dados de pixel suficientes.
Os requisitos específicos de dados de pixel dependem do tipo de código de barras e da quantidade de dados nele codificados (já que a maioria dos códigos de barras é compatível com payload de comprimento variável). Em geral, a menor unidade significativa do código de barras deve ter pelo menos 2 pixels de largura (e para códigos bidimensionais, 2 pixels de altura).
Por exemplo, os códigos de barras EAN-13 são compostos de barras e espaços de 1, 2, 3 ou 4 unidades de largura. Portanto, uma imagem de código de barras EAN-13 apresenta barras e espaços de, no mínimo, 2, 4, 6 e 8 pixels de largura. Como um código de barras EAN-13 tem 95 unidades no total, o código de barras deve ter pelo menos 190 pixels de largura.
Formatos mais densos, como o PDF417, precisam de dimensões em pixels maiores para que o Kit de ML possa ler de forma confiável. Por exemplo, um código PDF417 pode ter até 34 "palavras" de 17 unidades em uma única linha, que, em uma situação ideal, teria pelo menos 1.156 pixels de largura.
-
Uma imagem com foco inadequado pode prejudicar a precisão. Se os resultados não forem aceitáveis, peça para o usuário recapturar a imagem.
-
Para aplicativos típicos, recomenda-se fornecer uma imagem de resolução mais alta (como 1280 x 720 ou 1920 x 1080), que detecta códigos de barras a uma distância maior da câmera.
No entanto, em aplicativos em que a latência é crítica, é possível melhorar o desempenho capturando imagens com uma resolução menor, desde que o código de barras componha a maior parte da imagem de entrada. Consulte também Dicas para melhorar o desempenho em tempo real.
1. Configurar o detector de código de barras
Se souber quais formatos de código de barras espera ler, você poderá aumentar a velocidade do detector de código de barras configurando-o para detectar apenas esses formatos.Por exemplo, para detectar apenas código Aztec e códigos QR, crie um objeto VisionBarcodeDetectorOptions
como no exemplo a seguir:
Swift
let format = VisionBarcodeFormat.all let barcodeOptions = VisionBarcodeDetectorOptions(formats: format)
Os seguintes formatos são compatíveis:
- Code128
- Code39
- Code93
- CodaBar
- EAN13
- EAN8
- ITF
- UPCA
- UPCE
- QRCode
- PDF417
- Aztec
- DataMatrix
Objective-C
FIRVisionBarcodeDetectorOptions *options = [[FIRVisionBarcodeDetectorOptions alloc] initWithFormats: FIRVisionBarcodeFormatQRCode | FIRVisionBarcodeFormatAztec];
Os seguintes formatos são compatíveis:
- Code 128 (
FIRVisionBarcodeFormatCode128
) - Code 39 (
FIRVisionBarcodeFormatCode39
) - Code 93 (
FIRVisionBarcodeFormatCode93
) - Codabar (
FIRVisionBarcodeFormatCodaBar
) - EAN-13 (
FIRVisionBarcodeFormatEAN13
) - EAN-8 (
FIRVisionBarcodeFormatEAN8
) - ITF (
FIRVisionBarcodeFormatITF
) - UPC-A (
FIRVisionBarcodeFormatUPCA
) - UPC-E (
FIRVisionBarcodeFormatUPCE
) - QR Code (
FIRVisionBarcodeFormatQRCode
) - PDF417 (
FIRVisionBarcodeFormatPDF417
) - Aztec (
FIRVisionBarcodeFormatAztec
) - Data Matrix (
FIRVisionBarcodeFormatDataMatrix
)
2. Executar o detector de código de barras
Para ler códigos de barras em uma imagem, transmita a imagem comoUIImage
ou CMSampleBufferRef
para o método detect(in:)
do VisionBarcodeDetector
:
- Receba uma instância de
VisionBarcodeDetector
:Swift
lazy var vision = Vision.vision() let barcodeDetector = vision.barcodeDetector(options: barcodeOptions)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionBarcodeDetector *barcodeDetector = [vision barcodeDetector]; // Or, to change the default settings: // FIRVisionBarcodeDetector *barcodeDetector = // [vision barcodeDetectorWithOptions:options];
-
Crie um objeto
VisionImage
usando umUIImage
ou umCMSampleBufferRef
.Para usar um
UIImage
:- Se necessário, gire a imagem para que a propriedade
imageOrientation
seja.up
. - Crie um objeto
VisionImage
usando aUIImage
com a rotação correta. Não especifique metadados de rotação: o valor padrão,.topLeft
, precisa ser usado.Swift
let image = VisionImage(image: uiImage)
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Para usar um
CMSampleBufferRef
:-
Crie um objeto
VisionImageMetadata
que especifique a orientação dos dados da imagem contidos no bufferCMSampleBufferRef
.Para ver a orientação da imagem:
Swift
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objective-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Em seguida, crie o objeto de metadados:
Swift
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objective-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Crie um objeto
VisionImage
usando o objetoCMSampleBufferRef
e os metadados de rotação:Swift
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objective-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- Se necessário, gire a imagem para que a propriedade
-
Em seguida, transmita a imagem para o método
detect(in:)
:Swift
barcodeDetector.detect(in: visionImage) { features, error in guard error == nil, let features = features, !features.isEmpty else { // ... return } // ... }
Objective-C
[barcodeDetector detectInImage:image completion:^(NSArray<FIRVisionBarcode *> *barcodes, NSError *error) { if (error != nil) { return; } else if (barcodes != nil) { // Recognized barcodes // ... } }];
3. Receber informações de códigos de barras
Se a operação de reconhecimento do código de barras for bem-sucedida, o detector retornará uma matriz de objetosVisionBarcode
. Cada objeto VisionBarcode
representa um código de barras detectado na imagem. Para cada código de barras, é possível receber as coordenadas delimitadoras na imagem de entrada, bem como os dados brutos codificados no código de barras. Além disso, se o detector de código de barras tiver sido capaz de determinar o tipo de dados codificados pelo código de barras, será possível receber um objeto contendo dados analisados.
Por exemplo:
Swift
for barcode in barcodes { let corners = barcode.cornerPoints let displayValue = barcode.displayValue let rawValue = barcode.rawValue let valueType = barcode.valueType switch valueType { case .wiFi: let ssid = barcode.wifi!.ssid let password = barcode.wifi!.password let encryptionType = barcode.wifi!.type case .URL: let title = barcode.url!.title let url = barcode.url!.url default: // See API reference for all supported value types } }
Objective-C
for (FIRVisionBarcode *barcode in barcodes) { NSArray *corners = barcode.cornerPoints; NSString *displayValue = barcode.displayValue; NSString *rawValue = barcode.rawValue; FIRVisionBarcodeValueType valueType = barcode.valueType; switch (valueType) { case FIRVisionBarcodeValueTypeWiFi: // ssid = barcode.wifi.ssid; // password = barcode.wifi.password; // encryptionType = barcode.wifi.type; break; case FIRVisionBarcodeValueTypeURL: // url = barcode.URL.url; // title = barcode.URL.title; break; // ... default: break; } }
Dicas para melhorar o desempenho em tempo real
Se preferir ler códigos de barras em um aplicativo em tempo real, siga estas diretrizes para conseguir as melhores taxas de frames:
-
Não capture a entrada na resolução nativa da câmera. Em alguns dispositivos, a captura da entrada na resolução nativa produz imagens extremamente grandes (mais de 10 megapixels), o que resulta em latência muito baixa sem nenhum benefício para a precisão. Em vez disso, solicite apenas o tamanho da câmera necessário para a detecção de códigos de barras: normalmente, não mais que 2 megapixels.
As predefinições de sessão de captura com nome (
AVCaptureSessionPresetDefault
,AVCaptureSessionPresetLow
,AVCaptureSessionPresetMedium
e assim por diante) não são recomendadas porque podem ser mapeadas para resoluções inadequadas em alguns dispositivos. Em vez disso, use as predefinições específicas, comoAVCaptureSessionPreset1280x720
.Se a velocidade de leitura for importante, você poderá diminuir ainda mais a resolução da captura da imagem. No entanto, considere os requisitos mínimos de tamanho de código de barras descritos acima.
- Limite as chamadas ao detector. Se um novo frame de vídeo ficar disponível durante a execução do detector, descarte esse frame.
- Se você estiver usando a saída do detector para sobrepor elementos gráficos na imagem de entrada, primeiro acesse o resultado do Kit de ML. Em seguida, renderize a imagem e faça a sobreposição de uma só vez. Ao fazer isso, você renderiza a superfície de exibição apenas uma vez para cada frame de entrada. Consulte as classes previewOverlayView e FIRDetectionOverlayView no app de exemplo da demonstração.