Распознавайте ориентиры с помощью ML Kit на iOS, Распознавайте ориентиры с помощью ML Kit на iOS

Вы можете использовать ML Kit для распознавания известных достопримечательностей на изображении.

Прежде чем начать

  1. Если вы еще не добавили Firebase в свое приложение, сделайте это, выполнив действия, описанные в руководстве по началу работы .
  2. Включите библиотеки ML Kit в свой подфайл:
    pod 'Firebase/MLVision', '6.25.0'
    
    После установки или обновления модулей вашего проекта обязательно откройте проект Xcode, используя его .xcworkspace .
  3. Импортируйте Firebase в свое приложение:

    Быстрый

    import Firebase

    Цель-C

    @import Firebase;
  4. Если вы еще не включили облачные API для своего проекта, сделайте это сейчас:

    1. Откройте страницу API ML Kit в консоли Firebase .
    2. Если вы еще не обновили свой проект до тарифного плана Blaze, нажмите «Обновить» , чтобы сделать это. (Вам будет предложено выполнить обновление, только если ваш проект не входит в план Blaze.)

      Только проекты уровня Blaze могут использовать облачные API.

    3. Если облачные API еще не включены, нажмите «Включить облачные API» .

Настройка детектора ориентиров

По умолчанию детектор облаков использует стабильную версию модели и возвращает до 10 результатов. Если вы хотите изменить любой из этих параметров, укажите их с помощью объекта VisionCloudDetectorOptions , как показано в следующем примере:

Быстрый

let options = VisionCloudDetectorOptions()
options.modelType = .latest
options.maxResults = 20

Цель-C

  FIRVisionCloudDetectorOptions *options =
      [[FIRVisionCloudDetectorOptions alloc] init];
  options.modelType = FIRVisionCloudModelTypeLatest;
  options.maxResults = 20;
  

На следующем шаге передайте объект VisionCloudDetectorOptions при создании объекта детектора облаков.

Запустите детектор ориентиров

Чтобы распознать ориентиры на изображении, передайте изображение как UIImage или CMSampleBufferRef в метод detect(in:) VisionCloudLandmarkDetector :

  1. Получите экземпляр VisionCloudLandmarkDetector :

    Быстрый

    lazy var vision = Vision.vision()
    
    let cloudDetector = vision.cloudLandmarkDetector(options: options)
    // Or, to use the default settings:
    // let cloudDetector = vision.cloudLandmarkDetector()

    Цель-C

    FIRVision *vision = [FIRVision vision];
    FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector];
    // Or, to change the default settings:
    // FIRVisionCloudLandmarkDetector *landmarkDetector =
    //     [vision cloudLandmarkDetectorWithOptions:options];
  2. Создайте объект VisionImage используя UIImage или CMSampleBufferRef .

    Чтобы использовать UIImage :

    1. При необходимости поверните изображение так, чтобы его свойство imageOrientation имело значение .up .
    2. Создайте объект VisionImage используя правильно повернутый UIImage . Не указывайте метаданные вращения — необходимо использовать значение по умолчанию .topLeft .

      Быстрый

      let image = VisionImage(image: uiImage)

      Цель-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];

    Чтобы использовать CMSampleBufferRef :

    1. Создайте объект VisionImageMetadata , который задает ориентацию данных изображения, содержащихся в буфере CMSampleBufferRef .

      Чтобы получить ориентацию изображения:

      Быстрый

      func imageOrientation(
          deviceOrientation: UIDeviceOrientation,
          cameraPosition: AVCaptureDevice.Position
          ) -> VisionDetectorImageOrientation {
          switch deviceOrientation {
          case .portrait:
              return cameraPosition == .front ? .leftTop : .rightTop
          case .landscapeLeft:
              return cameraPosition == .front ? .bottomLeft : .topLeft
          case .portraitUpsideDown:
              return cameraPosition == .front ? .rightBottom : .leftBottom
          case .landscapeRight:
              return cameraPosition == .front ? .topRight : .bottomRight
          case .faceDown, .faceUp, .unknown:
              return .leftTop
          }
      }

      Цель-C

      - (FIRVisionDetectorImageOrientation)
          imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation
                                 cameraPosition:(AVCaptureDevicePosition)cameraPosition {
        switch (deviceOrientation) {
          case UIDeviceOrientationPortrait:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationLeftTop;
            } else {
              return FIRVisionDetectorImageOrientationRightTop;
            }
          case UIDeviceOrientationLandscapeLeft:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationBottomLeft;
            } else {
              return FIRVisionDetectorImageOrientationTopLeft;
            }
          case UIDeviceOrientationPortraitUpsideDown:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationRightBottom;
            } else {
              return FIRVisionDetectorImageOrientationLeftBottom;
            }
          case UIDeviceOrientationLandscapeRight:
            if (cameraPosition == AVCaptureDevicePositionFront) {
              return FIRVisionDetectorImageOrientationTopRight;
            } else {
              return FIRVisionDetectorImageOrientationBottomRight;
            }
          default:
            return FIRVisionDetectorImageOrientationTopLeft;
        }
      }

      Затем создайте объект метаданных:

      Быстрый

      let cameraPosition = AVCaptureDevice.Position.back  // Set to the capture device you used.
      let metadata = VisionImageMetadata()
      metadata.orientation = imageOrientation(
          deviceOrientation: UIDevice.current.orientation,
          cameraPosition: cameraPosition
      )

      Цель-C

      FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];
      AVCaptureDevicePosition cameraPosition =
          AVCaptureDevicePositionBack;  // Set to the capture device you used.
      metadata.orientation =
          [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation
                                       cameraPosition:cameraPosition];
    2. Создайте объект VisionImage используя объект CMSampleBufferRef и метаданные вращения:

      Быстрый

      let image = VisionImage(buffer: sampleBuffer)
      image.metadata = metadata

      Цель-C

      FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];
      image.metadata = metadata;
  3. Затем передайте изображение методу detect(in:) :

    Быстрый

    cloudDetector.detect(in: visionImage) { landmarks, error in
      guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else {
        // ...
        return
      }
    
      // Recognized landmarks
      // ...
    }

    Цель-C

    [landmarkDetector detectInImage:image
                         completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks,
                                      NSError *error) {
      if (error != nil) {
        return;
      } else if (landmarks != nil) {
        // Got landmarks
      }
    }];

Получите информацию об признанных достопримечательностях

Если распознавание ориентира прошло успешно, обработчику завершения будет передан массив объектов VisionCloudLandmark . От каждого объекта можно получить информацию об ориентире, распознанном на изображении.

Например:

Быстрый

for landmark in landmarks {
  let landmarkDesc = landmark.landmark
  let boundingPoly = landmark.frame
  let entityId = landmark.entityId

  // A landmark can have multiple locations: for example, the location the image
  // was taken, and the location of the landmark depicted.
  for location in landmark.locations {
    let latitude = location.latitude
    let longitude = location.longitude
  }

  let confidence = landmark.confidence
}

Цель-C

for (FIRVisionCloudLandmark *landmark in landmarks) {
   NSString *landmarkDesc = landmark.landmark;
   CGRect frame = landmark.frame;
   NSString *entityId = landmark.entityId;

   // A landmark can have multiple locations: for example, the location the image
   // was taken, and the location of the landmark depicted.
   for (FIRVisionLatitudeLongitude *location in landmark.locations) {
     double latitude = [location.latitude doubleValue];
     double longitude = [location.longitude doubleValue];
   }

   float confidence = [landmark.confidence floatValue];
}

Следующие шаги