من أجل استدعاء Google Cloud API من تطبيقك ، تحتاج إلى إنشاء واجهة برمجة تطبيقات REST وسيطة تتعامل مع التفويض وتحمي القيم السرية مثل مفاتيح واجهة برمجة التطبيقات. ستحتاج بعد ذلك إلى كتابة رمز في تطبيق الهاتف المحمول الخاص بك للمصادقة على هذه الخدمة الوسيطة والتواصل معها.
تتمثل إحدى طرق إنشاء واجهة برمجة تطبيقات REST هذه في استخدام مصادقة ووظائف Firebase ، والتي تمنحك بوابة مُدارة بدون خادم إلى Google Cloud APIs التي تتعامل مع المصادقة ويمكن استدعاؤها من تطبيق الجوال الخاص بك باستخدام حزم SDK سابقة الإنشاء.
يوضح هذا الدليل كيفية استخدام هذه التقنية لاستدعاء Cloud Vision API من تطبيقك. ستسمح هذه الطريقة لجميع المستخدمين المعتمدين بالوصول إلى خدمات Cloud Vision التي تتم فوترتها من خلال مشروع Cloud الخاص بك ، لذا ضع في اعتبارك ما إذا كانت آلية المصادقة هذه كافية لحالة الاستخدام الخاصة بك قبل المتابعة.
قبل ان تبدأ
تكوين مشروعك
- أضف Firebase إلى مشروع Android ، إذا لم تكن قد قمت بذلك بالفعل.
إذا لم تكن قد قمت بالفعل بتمكين واجهات برمجة التطبيقات المستندة إلى السحابة لمشروعك ، فقم بذلك الآن:
- افتح صفحة Firebase ML APIs بوحدة تحكم Firebase.
إذا لم تكن قد قمت بالفعل بترقية مشروعك إلى خطة تسعير Blaze ، فانقر فوق ترقية للقيام بذلك. (ستتم مطالبتك بالترقية فقط إذا لم يكن مشروعك مدرجًا في خطة Blaze.)
يمكن فقط للمشاريع على مستوى Blaze استخدام واجهات برمجة التطبيقات المستندة إلى السحابة.
- إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة ممكّنة بالفعل ، فانقر فوق تمكين واجهات برمجة التطبيقات المستندة إلى السحابة .
- هيئ مفاتيح Firebase API الحالية لعدم السماح بالوصول إلى Cloud Vision API:
- افتح صفحة بيانات الاعتماد الخاصة بوحدة التحكم السحابية.
- لكل مفتاح API في القائمة ، افتح عرض التحرير ، وفي قسم Key Restrictions ، أضف جميع واجهات برمجة التطبيقات المتاحة باستثناء Cloud Vision API إلى القائمة.
انشر الوظيفة القابلة للاستدعاء
بعد ذلك ، انشر وظيفة السحابة التي ستستخدمها لربط تطبيقك بواجهة Cloud Vision API. يحتوي مستودع functions-samples
على مثال يمكنك استخدامه.
بشكل افتراضي ، سيسمح الوصول إلى Cloud Vision API من خلال هذه الوظيفة للمستخدمين المعتمدين فقط من تطبيقك بالوصول إلى Cloud Vision API. يمكنك تعديل الوظيفة لمتطلبات مختلفة.
لنشر الوظيفة:
- استنساخ أو تنزيل الريبو الخاص بعينات الوظائف والتغيير إلى دليل Vision
vision-annotate-image
:git clone https://github.com/firebase/functions-samples
cd vision-annotate-image
- تثبيت التبعيات:
cd functions
npm install
cd ..
- إذا لم يكن لديك Firebase CLI ، فثبته .
- ابدأ مشروع Firebase في دليل Vision
vision-annotate-image
. عند المطالبة ، حدد مشروعك في القائمة.firebase init
- انشر الوظيفة:
firebase deploy --only functions:annotateImage
أضف Firebase Auth إلى تطبيقك
سترفض الوظيفة القابلة للاستدعاء التي تم نشرها أعلاه أي طلب من المستخدمين غير المصادق عليهم لتطبيقك. إذا لم تكن قد قمت بذلك بالفعل ، فستحتاج إلى إضافة Firebase Auth إلى تطبيقك.
أضف التبعيات الضرورية إلى تطبيقك
implementation 'com.google.firebase:firebase-functions:20.2.2' implementation 'com.google.code.gson:gson:2.8.6'
أنت الآن جاهز لتسمية الصور.
1. تحضير صورة الإدخال
من أجل استدعاء Cloud Vision ، يجب تنسيق الصورة كسلسلة مشفرة base64. لمعالجة صورة من ملف URI محفوظ:- الحصول على
Bitmap
ككائن نقطي:Kotlin+KTX
var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
Java
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
- اختياريًا ، قم بتصغير الصورة لحفظها على النطاق الترددي. راجع أحجام الصور الموصى بها من Cloud Vision.
Kotlin+KTX
private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap { val originalWidth = bitmap.width val originalHeight = bitmap.height var resizedWidth = maxDimension var resizedHeight = maxDimension if (originalHeight > originalWidth) { resizedHeight = maxDimension resizedWidth = (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt() } else if (originalWidth > originalHeight) { resizedWidth = maxDimension resizedHeight = (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt() } else if (originalHeight == originalWidth) { resizedHeight = maxDimension resizedWidth = maxDimension } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false) }
Java
private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) { int originalWidth = bitmap.getWidth(); int originalHeight = bitmap.getHeight(); int resizedWidth = maxDimension; int resizedHeight = maxDimension; if (originalHeight > originalWidth) { resizedHeight = maxDimension; resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight); } else if (originalWidth > originalHeight) { resizedWidth = maxDimension; resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth); } else if (originalHeight == originalWidth) { resizedHeight = maxDimension; resizedWidth = maxDimension; } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false); }
Kotlin+KTX
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640)
Java
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640);
- تحويل كائن الصورة النقطية إلى سلسلة مشفرة base64:
Kotlin+KTX
// Convert bitmap to base64 encoded string val byteArrayOutputStream = ByteArrayOutputStream() bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream) val imageBytes: ByteArray = byteArrayOutputStream.toByteArray() val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
Java
// Convert bitmap to base64 encoded string ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream); byte[] imageBytes = byteArrayOutputStream.toByteArray(); String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
يجب أن تكون الصورة التي يمثلها كائن
Bitmap
في وضع مستقيم ، دون الحاجة إلى تدوير إضافي.2. استدعاء الوظيفة القابلة للاستدعاء لتسمية الصورة
لتسمية كائنات في صورة ما ، قم باستدعاء الوظيفة القابلة للاستدعاء لتمرير طلب JSON Cloud Vision .أولاً ، قم بتهيئة مثيل من وظائف السحابة:
Kotlin+KTX
private lateinit var functions: FirebaseFunctions // ... functions = Firebase.functions
Java
private FirebaseFunctions mFunctions; // ... mFunctions = FirebaseFunctions.getInstance();
حدد طريقة لاستدعاء الوظيفة:
Kotlin+KTX
private fun annotateImage(requestJson: String): Task<JsonElement> { return functions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith { task -> // This continuation runs on either success or failure, but if the task // has failed then result will throw an Exception which will be // propagated down. val result = task.result?.data JsonParser.parseString(Gson().toJson(result)) } }
Java
private Task<JsonElement> annotateImage(String requestJson) { return mFunctions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith(new Continuation<HttpsCallableResult, JsonElement>() { @Override public JsonElement then(@NonNull Task<HttpsCallableResult> task) { // This continuation runs on either success or failure, but if the task // has failed then getResult() will throw an Exception which will be // propagated down. return JsonParser.parseString(new Gson().toJson(task.getResult().getData())); } }); }
أنشئ طلب JSON مع ضبط النوع على
LABEL_DETECTION
:Kotlin+KTX
// Create json request to cloud vision val request = JsonObject() // Add image to request val image = JsonObject() image.add("content", JsonPrimitive(base64encoded)) request.add("image", image) //Add features to the request val feature = JsonObject() feature.add("maxResults", JsonPrimitive(5)) feature.add("type", JsonPrimitive("LABEL_DETECTION")) val features = JsonArray() features.add(feature) request.add("features", features)
Java
// Create json request to cloud vision JsonObject request = new JsonObject(); // Add image to request JsonObject image = new JsonObject(); image.add("content", new JsonPrimitive(base64encoded)); request.add("image", image); //Add features to the request JsonObject feature = new JsonObject(); feature.add("maxResults", new JsonPrimitive(5)); feature.add("type", new JsonPrimitive("LABEL_DETECTION")); JsonArray features = new JsonArray(); features.add(feature); request.add("features", features);
أخيرًا ، قم باستدعاء الوظيفة:
Kotlin+KTX
annotateImage(request.toString()) .addOnCompleteListener { task -> if (!task.isSuccessful) { // Task failed with an exception // ... } else { // Task completed successfully // ... } }
Java
annotateImage(request.toString()) .addOnCompleteListener(new OnCompleteListener<JsonElement>() { @Override public void onComplete(@NonNull Task<JsonElement> task) { if (!task.isSuccessful()) { // Task failed with an exception // ... } else { // Task completed successfully // ... } } });
3. الحصول على معلومات حول الكائنات المسمى
إذا نجحت عملية تسمية الصورة ، فسيتم إرجاع استجابة JSON لـ BatchAnnotateImagesResponse في نتيجة المهمة. يمثل كل كائن في مصفوفةlabelAnnotations
شيئًا تمت تسميته في الصورة. لكل تصنيف ، يمكنك الحصول على وصف نصي للتسمية ، ومعرف كيان الرسم البياني المعرفي (إن وجد) ، ودرجة الثقة في المطابقة. علي سبيل المثال: Kotlin+KTX
for (label in task.result!!.asJsonArray[0].asJsonObject["labelAnnotations"].asJsonArray) {
val labelObj = label.asJsonObject
val text = labelObj["description"]
val entityId = labelObj["mid"]
val confidence = labelObj["score"]
}
Java
for (JsonElement label : task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("labelAnnotations").getAsJsonArray()) {
JsonObject labelObj = label.getAsJsonObject();
String text = labelObj.get("description").getAsString();
String entityId = labelObj.get("mid").getAsString();
float score = labelObj.get("score").getAsFloat();
}