يمكنك استخدام Firebase ML للتعرّف على المَعالم المعروفة في الصورة.
قبل البدء
- أضِف Firebase إلى مشروع Android، في حال لم يسبق لك إجراء ذلك.
-
في ملف Gradle للوحدة (على مستوى التطبيق)
(عادةً
<project>/<app-module>/build.gradle.kts
أو<project>/<app-module>/build.gradle
)، أضِف الاعتمادية لمكتبة Firebase ML Vision لنظام التشغيل Android. ننصحك باستخدام الرمز Firebase Android BoM للتحكّم في إصدارات المكتبة.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.7.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
باستخدام Firebase Android BoM، سيستخدم تطبيقك دائمًا إصدارات متوافقة من مكتبات Firebase لنظام التشغيل Android.
(بديل) إضافة تبعيات مكتبة Firebase بدون استخدام BoM
إذا اخترت عدم استخدام Firebase BoM، يجب تحديد كل إصدار من مكتبة Firebase في سطر التبعية الخاص به.
يُرجى العلم أنّه في حال استخدام مكتبات Firebase متعدّدة في تطبيقك، ننصحك بشدة باستخدام BoM لإدارة إصدارات المكتبة، ما يضمن توافق جميع الإصدارات.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
-
إذا لم يسبق لك تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية لمشروعك، عليك إجراء ذلك الآن:
- افتح Firebase ML صفحة واجهات برمجة التطبيقات في وحدة تحكّم Firebase.
-
إذا لم تكن قد أجريت ترقية لمشروعك إلى خطة أسعار Blaze، انقر على ترقية لإجراء ذلك. (لن يُطلب منك إجراء الترقية إلا إذا كان مشروعك غير مُدرَج في خطة Blaze).
يمكن للمشاريع على مستوى Blaze فقط استخدام واجهات برمجة التطبيقات المستندة إلى Cloud.
- إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية مفعّلة، انقر على تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.
ضبط أداة رصد المعالم
يستخدم أداة رصد Cloud تلقائيًا الإصدار STABLE
من ال
نموذج ويعرض ما يصل إلى 10 نتائج. إذا أردت تغيير أيّ من هذين الإعدادَين، حدِّدهما باستخدام عنصر FirebaseVisionCloudDetectorOptions
.
على سبيل المثال، لتغيير كلا الإعدادَين التلقائيَين، أنشئ عنصر
FirebaseVisionCloudDetectorOptions
كما هو موضّح في المثال التالي:
Kotlin
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
لاستخدام الإعدادات التلقائية، يمكنك استخدام رمز
FirebaseVisionCloudDetectorOptions.DEFAULT
في الخطوة التالية.
تشغيل أداة رصد المعالم
للتعرّف على المعالم في الصورة، أنشئ عنصرًا من النوعFirebaseVisionImage
من صفيف Bitmap
أو media.Image
أو ByteBuffer
أو بايت أو ملف على
الجهاز. بعد ذلك، نقْل عنصر FirebaseVisionImage
إلى الطريقة detectInImage
في FirebaseVisionCloudLandmarkDetector
.
أنشئ عنصرًا
FirebaseVisionImage
من صورتك.-
لإنشاء عنصر
FirebaseVisionImage
منmedia.Image
، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصرmedia.Image
ودرجة دوران الصورة إلىFirebaseVisionImage.fromMediaImage()
.إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئة
OnImageCapturedListener
وImageAnalysis.Analyzer
قيمة الدوران بالنيابة عنك، لذا ما عليك سوى تحويل الدوران إلى أحدROTATION_
Firebase ML الثابتة قبل استدعاءFirebaseVisionImage.fromMediaImage()
:Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
إذا كنت لا تستخدم مكتبة كاميرا تمنحك معلومات عن دوران الصورة، يمكنك احتسابها من خلال دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
بعد ذلك، مرِّر العنصر
media.Image
وقيمة الدوران إلىFirebaseVisionImage.fromMediaImage()
:Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- لإنشاء عنصر
FirebaseVisionImage
من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلىFirebaseVisionImage.fromFilePath()
. يكون ذلك مفيدًا عند استخدام نيةACTION_GET_CONTENT
لطلب تحديد صورة من تطبيق معرض الصور.Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- لإنشاء عنصر
FirebaseVisionImage
منByteBuffer
أو صفيف بايت، يجب أولاً احتساب ملفه الشخصي للدوران كما هو موضّح أعلاه لإدخالmedia.Image
.بعد ذلك، أنشئ عنصرًا من النوع
FirebaseVisionImageMetadata
يحتوي على ارتفاع الصورة وعرضها وتنسيق ترميز اللون وتدويرها:Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
استخدِم المخزن المؤقت أو الصفيف وعنصر البيانات الوصفية لإنشاء عنصر
FirebaseVisionImage
:Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- لإنشاء عنصر
FirebaseVisionImage
من عنصرBitmap
:Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
منتصبة، بدون الحاجة إلى إجراء أيّ دوران إضافي.
-
الحصول على مثيل من
FirebaseVisionCloudLandmarkDetector
:Kotlin
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
أخيرًا، نقْل الصورة إلى طريقة
detectInImage
:Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
الحصول على معلومات عن المعالم التي تم التعرّف عليها
في حال نجاح عملية التعرّف على المعالم، سيتم تمرير قائمة بعناصرFirebaseVisionCloudLandmark
إلى مستمع الحدث "النجاح". يمثّل كل عنصر
FirebaseVisionCloudLandmark
معلمًا تم التعرّف عليه في
الصورة. لكل معلم، يمكنك الحصول على إحداثيات حدوده في صورة الإدخال،
وعلى اسم المَعلم، وخطّي العرض والطول، ومعرّف عنصر "الرسم البياني المعرفي"
(إذا كان متوفّرًا)، ودرجة ثقة المطابقة. على سبيل المثال:
Kotlin
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
الخطوات التالية
- قبل نشر تطبيق يستخدم واجهة برمجة تطبيقات Cloud في قناة الإصدار العلني، عليك اتّخاذ بعض الخطوات الإضافية لمنع أثر الوصول غير المصرّح به إلى واجهة برمجة التطبيقات والحدّ منه.