คุณสามารถใช้ Firebase ML เพื่อจดจำจุดสังเกตที่เป็นที่รู้จักในรูปภาพ
ก่อนที่คุณจะเริ่มต้น
- หากคุณยังไม่ได้ ดำเนินการ ให้เพิ่ม Firebase ในโครงการ Android ของคุณ
- ใน ไฟล์ Gradle ของโมดูล (ระดับแอป) (โดยปกติคือ
<project>/<app-module>/build.gradle.kts
หรือ<project>/<app-module>/build.gradle
) เพิ่มการพึ่งพาสำหรับ Firebase ML วิสัยทัศน์ห้องสมุด Android ขอแนะนำให้ใช้ Firebase Android BoM เพื่อควบคุมการกำหนดเวอร์ชันของไลบรารีdependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:32.3.1")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
เมื่อใช้ Firebase Android BoM แอปของคุณจะใช้ไลบรารี Firebase Android เวอร์ชันที่เข้ากันได้เสมอ
(ทางเลือก) เพิ่มการอ้างอิงไลบรารี Firebase โดยไม่ ใช้ BoM
หากคุณเลือกที่จะไม่ใช้ Firebase BoM คุณต้องระบุแต่ละเวอร์ชันของไลบรารี Firebase ในบรรทัดอ้างอิง
โปรดทราบว่าหากคุณใช้ไลบรารี Firebase หลาย ไลบรารีในแอป เราขอแนะนำอย่างยิ่งให้ใช้ BoM เพื่อจัดการเวอร์ชันของไลบรารี ซึ่งทำให้แน่ใจว่าเวอร์ชันทั้งหมดเข้ากันได้
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
หากคุณยังไม่ได้เปิดใช้ API บนคลาวด์สำหรับโครงการของคุณ ให้ดำเนินการทันที:
- เปิด หน้า Firebase ML API ของคอนโซล Firebase
หากคุณยังไม่ได้อัปเกรดโครงการเป็นแผนราคา Blaze ให้คลิก อัปเกรด เพื่อดำเนินการดังกล่าว (คุณจะได้รับแจ้งให้อัปเกรดเฉพาะในกรณีที่โปรเจ็กต์ของคุณไม่ได้อยู่ในแผน Blaze)
โปรเจ็กต์ระดับ Blaze เท่านั้นที่ใช้ API บนคลาวด์ได้
- หากยังไม่ได้เปิดใช้ API บนคลาวด์ ให้คลิก เปิดใช้ API บนคลาวด์
กำหนดค่าเครื่องตรวจจับจุดสังเกต
ตามค่าเริ่มต้น ตัวตรวจจับเมฆจะใช้โมเดลเวอร์ชัน STABLE
และส่งคืนผลลัพธ์สูงสุด 10 รายการ หากคุณต้องการเปลี่ยนการตั้งค่าเหล่านี้ ให้ระบุด้วยอ็อบเจ็กต์ FirebaseVisionCloudDetectorOptions
ตัวอย่างเช่น หากต้องการเปลี่ยนการตั้งค่าเริ่มต้นทั้งสอง ให้สร้างออบเจ็กต์ FirebaseVisionCloudDetectorOptions
ตามตัวอย่างต่อไปนี้:
Kotlin+KTX
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
หากต้องการใช้การตั้งค่าเริ่มต้น คุณสามารถใช้ FirebaseVisionCloudDetectorOptions.DEFAULT
ในขั้นตอนถัดไป
เรียกใช้เครื่องตรวจจับจุดสังเกต
ในการจดจำจุดสังเกตในรูปภาพ ให้สร้างวัตถุFirebaseVisionImage
จาก Bitmap
, media.Image
, ByteBuffer
, อาร์เรย์ไบต์ หรือไฟล์บนอุปกรณ์ จากนั้น ส่งออบเจ็กต์ FirebaseVisionImage
ไปยังเมธอด detectInImage
ของ FirebaseVisionCloudLandmarkDetector
สร้างวัตถุ
FirebaseVisionImage
จากภาพของคุณหากต้องการสร้างออบเจ็กต์
FirebaseVisionImage
จากmedia.Image
เช่น เมื่อจับภาพจากกล้องของอุปกรณ์ ให้ส่งmedia.Image
และการหมุนภาพไปยังFirebaseVisionImage.fromMediaImage()
หากคุณใช้ไลบรารี CameraX คลาส
OnImageCapturedListener
และImageAnalysis.Analyzer
จะคำนวณค่าการหมุนให้คุณ ดังนั้นคุณเพียงแค่ต้องแปลงการหมุนเป็นค่าคงที่ROTATION_
ของ Firebase ML ก่อนเรียกFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
หากคุณไม่ได้ใช้คลังกล้องที่ให้การหมุนของภาพ คุณสามารถคำนวณได้จากการหมุนของอุปกรณ์และการวางแนวของเซ็นเซอร์กล้องในอุปกรณ์:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
จากนั้นส่งวัตถุ
media.Image
และค่าการหมุนไปยังFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- หากต้องการสร้างวัตถุ
FirebaseVisionImage
จากไฟล์ URI ให้ส่งบริบทของแอปและไฟล์ URI ไปยังFirebaseVisionImage.fromFilePath()
ซึ่งจะเป็นประโยชน์เมื่อคุณใช้ACTION_GET_CONTENT
ตั้งใจให้ผู้ใช้เลือกรูปภาพจากแอปแกลเลอรีของตนKotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- หากต้องการสร้างอ็อบเจ็กต์
FirebaseVisionImage
จากByteBuffer
หรืออาร์เรย์แบบไบต์ ขั้นแรกให้คำนวณการหมุนรูปภาพตามที่อธิบายไว้ข้างต้นสำหรับอินพุตmedia.Image
จากนั้น สร้างวัตถุ
FirebaseVisionImageMetadata
ที่มีความสูง ความกว้าง รูปแบบการเข้ารหัสสี และการหมุนของรูปภาพ:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
ใช้บัฟเฟอร์หรืออาร์เรย์และวัตถุข้อมูลเมตาเพื่อสร้างวัตถุ
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- วิธีสร้างวัตถุ
FirebaseVisionImage
จากวัตถุBitmap
:รูปภาพที่แสดงโดยวัตถุKotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
ต้องตั้งตรง โดยไม่จำเป็นต้องหมุนเพิ่มเติม
รับอินสแตนซ์ของ
FirebaseVisionCloudLandmarkDetector
:Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
สุดท้ายส่งภาพไปยังวิธี
detectInImage
:Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
รับข้อมูลเกี่ยวกับจุดสังเกตที่รู้จัก
หากการดำเนินการจดจำจุดสังเกตสำเร็จ รายการของออบเจ็กต์FirebaseVisionCloudLandmark
จะถูกส่งผ่านไปยัง Listener ที่สำเร็จ ออบเจ็กต์ FirebaseVisionCloudLandmark
แต่ละรายการแสดงถึงจุดสังเกตที่รู้จักในรูปภาพ สำหรับจุดสังเกตแต่ละจุด คุณจะได้รับพิกัดขอบเขตในภาพอินพุต ชื่อของจุดสังเกต ละติจูดและลองจิจูด ID เอนทิตีของกราฟความรู้ (ถ้ามี) และคะแนนความเชื่อมั่นของการจับคู่ ตัวอย่างเช่น: Kotlin+KTX
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
ขั้นตอนถัดไป
- ก่อนที่คุณจะปรับใช้กับแอปที่ใช้ Cloud API ในการผลิต คุณควรทำตามขั้นตอนเพิ่มเติมบางอย่างเพื่อ ป้องกันและบรรเทาผลกระทบจากการเข้าถึง API ที่ไม่ได้รับอนุญาต