Google se compromete a impulsar la igualdad racial para las comunidades afrodescendientes. Obtén información al respecto.

Reconoce puntos de referencia con Firebase ML en Android

Puede usar Firebase ML para reconocer puntos de referencia conocidos en una imagen.

Antes de que empieces

  1. Si aún no lo ha hecho, agregue Firebase a su proyecto de Android .
  2. Con Firebase Android BoM , declare la dependencia de la biblioteca de Android Firebase ML Vision en el archivo Gradle de su módulo (nivel de aplicación) (generalmente app/build.gradle ).
    dependencies {
        // Import the BoM for the Firebase platform
        implementation platform('com.google.firebase:firebase-bom:30.3.1')
    
        // Declare the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }
    

    Al usar Firebase Android BoM , su aplicación siempre usará versiones compatibles de las bibliotecas de Firebase Android.

    (Alternativa) Declarar las dependencias de la biblioteca de Firebase sin usar BoM

    Si elige no usar Firebase BoM, debe especificar cada versión de la biblioteca de Firebase en su línea de dependencia.

    Tenga en cuenta que si usa varias bibliotecas de Firebase en su aplicación, le recomendamos enfáticamente que use BoM para administrar las versiones de la biblioteca, lo que garantiza que todas las versiones sean compatibles.

    dependencies {
        // Declare the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    
  3. Si aún no ha habilitado las API basadas en la nube para su proyecto, hágalo ahora:

    1. Abra la página de las API de Firebase ML de la consola de Firebase.
    2. Si aún no ha actualizado su proyecto al plan de precios de Blaze, haga clic en Actualizar para hacerlo. (Se le pedirá que actualice solo si su proyecto no está en el plan Blaze).

      Solo los proyectos de nivel Blaze pueden usar API basadas en la nube.

    3. Si las API basadas en la nube aún no están habilitadas, haga clic en Habilitar API basadas en la nube .

Configurar el detector de puntos de referencia

De forma predeterminada, el detector de nubes utiliza la versión STABLE del modelo y devuelve hasta 10 resultados. Si desea cambiar alguna de estas configuraciones, especifíquelas con un objeto FirebaseVisionCloudDetectorOptions .

Por ejemplo, para cambiar ambas configuraciones predeterminadas, cree un objeto FirebaseVisionCloudDetectorOptions como en el siguiente ejemplo:

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

Para usar la configuración predeterminada, puede usar FirebaseVisionCloudDetectorOptions.DEFAULT en el siguiente paso.

Ejecute el detector de puntos de referencia

Para reconocer puntos de referencia en una imagen, cree un objeto FirebaseVisionImage desde Bitmap , media.Image , ByteBuffer , byte array o un archivo en el dispositivo. Luego, pase el objeto FirebaseVisionImage al método detectInImage de FirebaseVisionCloudLandmarkDetector .

  1. Cree un objeto FirebaseVisionImage a partir de su imagen.

    • Para crear un objeto FirebaseVisionImage a partir de un objeto media.Image , como al capturar una imagen de la cámara de un dispositivo, pase el objeto media.Image y la rotación de la imagen a FirebaseVisionImage.fromMediaImage() .

      Si usa la biblioteca CameraX , las clases OnImageCapturedListener e ImageAnalysis.Analyzer calculan el valor de rotación por usted, por lo que solo necesita convertir la rotación a una de las constantes ROTATION_ de Firebase ML antes de llamar a FirebaseVisionImage.fromMediaImage() :

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }
      

      Si no usa una biblioteca de cámaras que le proporcione la rotación de la imagen, puede calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Luego, pasa el objeto media.Image y el valor de rotación a FirebaseVisionImage.fromMediaImage() :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Para crear un objeto FirebaseVisionImage a partir de un URI de archivo, pase el contexto de la aplicación y el URI del archivo a FirebaseVisionImage.fromFilePath() . Esto es útil cuando usa una intención ACTION_GET_CONTENT para solicitar al usuario que seleccione una imagen de su aplicación de galería.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Para crear un objeto FirebaseVisionImage a partir de un ByteBuffer o una matriz de bytes, primero calcule la rotación de la imagen como se describe anteriormente para la entrada de media.Image .

      Luego, crea un objeto FirebaseVisionImageMetadata que contenga la altura, el ancho, el formato de codificación de colores y la rotación de la imagen:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Usa el búfer o la matriz y el objeto de metadatos para crear un objeto FirebaseVisionImage :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Para crear un objeto FirebaseVisionImage a partir de un objeto Bitmap :

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      La imagen representada por el objeto de Bitmap de bits debe estar en posición vertical, sin necesidad de rotación adicional.

  2. Obtén una instancia de FirebaseVisionCloudLandmarkDetector :

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)
  3. Finalmente, pasa la imagen al método detectInImage :

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

Obtenga información sobre los puntos de referencia reconocidos.

Si la operación de reconocimiento de puntos de referencia tiene éxito, se pasará una lista de objetos FirebaseVisionCloudLandmark al agente de escucha correcto. Cada objeto FirebaseVisionCloudLandmark representa un punto de referencia que se reconoció en la imagen. Para cada punto de referencia, puede obtener sus coordenadas de límite en la imagen de entrada, el nombre del punto de referencia, su latitud y longitud, su ID de entidad de Knowledge Graph (si está disponible) y la puntuación de confianza de la coincidencia. Por ejemplo:

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Próximos pasos