Reconhecer pontos de referência com Firebase ML no Android

Você pode usar o Firebase ML para reconhecer pontos de referência conhecidos em uma imagem.

Antes de você começar

  1. Adicione o Firebase ao seu projeto Android , caso ainda não o tenha feito.
  2. No arquivo Gradle do módulo (nível do aplicativo) (geralmente <project>/<app-module>/build.gradle.kts ou <project>/<app-module>/build.gradle ), adicione a dependência para o Firebase ML Biblioteca de visão para Android. Recomendamos usar o Firebase Android BoM para controlar o controle de versão da biblioteca.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:32.8.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }
    

    Ao usar o Firebase Android BoM , seu aplicativo sempre usará versões compatíveis das bibliotecas do Firebase Android.

    (Alternativa) Adicionar dependências da biblioteca Firebase sem usar o BoM

    Se você optar por não usar o Firebase BoM, deverá especificar cada versão da biblioteca do Firebase em sua linha de dependência.

    Observe que se você usa várias bibliotecas do Firebase no seu aplicativo, é altamente recomendável usar a BoM para gerenciar as versões da biblioteca, o que garante que todas as versões sejam compatíveis.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    
    Procurando um módulo de biblioteca específico para Kotlin? A partir de outubro de 2023 (Firebase BoM 32.5.0) , tanto os desenvolvedores Kotlin quanto os Java podem depender do módulo da biblioteca principal (para obter detalhes, consulte o FAQ sobre esta iniciativa ).
  3. Se você ainda não habilitou APIs baseadas em nuvem para seu projeto, faça-o agora:

    1. Abra a página APIs do Firebase ML do console do Firebase.
    2. Se você ainda não atualizou seu projeto para o plano de preços Blaze, clique em Atualizar para fazer isso. (Você será solicitado a atualizar somente se o seu projeto não estiver no plano Blaze.)

      Somente projetos no nível Blaze podem usar APIs baseadas em nuvem.

    3. Se as APIs baseadas em nuvem ainda não estiverem habilitadas, clique em Habilitar APIs baseadas em nuvem .

Configurar o detector de pontos de referência

Por padrão, o detector de nuvem usa a versão STABLE do modelo e retorna até 10 resultados. Se você quiser alterar qualquer uma dessas configurações, especifique-as com um objeto FirebaseVisionCloudDetectorOptions .

Por exemplo, para alterar ambas as configurações padrão, crie um objeto FirebaseVisionCloudDetectorOptions como no exemplo a seguir:

Kotlin+KTX

val options = FirebaseVisionCloudDetectorOptions.Builder()
    .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
    .setMaxResults(15)
    .build()

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Para usar as configurações padrão, você pode usar FirebaseVisionCloudDetectorOptions.DEFAULT na próxima etapa.

Execute o detector de pontos de referência

Para reconhecer pontos de referência em uma imagem, crie um objeto FirebaseVisionImage a partir de um Bitmap , media.Image , ByteBuffer , matriz de bytes ou de um arquivo no dispositivo. Em seguida, passe o objeto FirebaseVisionImage para o método detectInImage do FirebaseVisionCloudLandmarkDetector .

  1. Crie um objeto FirebaseVisionImage a partir da sua imagem.

    • Para criar um objeto FirebaseVisionImage a partir de um objeto media.Image , como ao capturar uma imagem da câmera de um dispositivo, passe o objeto media.Image e a rotação da imagem para FirebaseVisionImage.fromMediaImage() .

      Se você usa a biblioteca CameraX , as classes OnImageCapturedListener e ImageAnalysis.Analyzer calculam o valor de rotação para você, então você só precisa converter a rotação em uma das constantes ROTATION_ do Firebase ML antes de chamar FirebaseVisionImage.fromMediaImage() :

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }
      

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }
      

      Se você não usa uma biblioteca de câmeras que fornece a rotação da imagem, você pode calculá-la a partir da rotação do dispositivo e da orientação do sensor da câmera no dispositivo:

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Em seguida, passe o objeto media.Image e o valor de rotação para FirebaseVisionImage.fromMediaImage() :

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • Para criar um objeto FirebaseVisionImage a partir de um URI de arquivo, passe o contexto do aplicativo e o URI do arquivo para FirebaseVisionImage.fromFilePath() . Isso é útil quando você usa uma intent ACTION_GET_CONTENT para solicitar que o usuário selecione uma imagem do aplicativo de galeria.

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • Para criar um objeto FirebaseVisionImage a partir de um ByteBuffer ou de uma matriz de bytes, primeiro calcule a rotação da imagem conforme descrito acima para a entrada media.Image .

      Em seguida, crie um objeto FirebaseVisionImageMetadata que contenha a altura, a largura, o formato de codificação de cores e a rotação da imagem:

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Use o buffer ou array e o objeto de metadados para criar um objeto FirebaseVisionImage :

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • Para criar um objeto FirebaseVisionImage a partir de um objeto Bitmap :

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      A imagem representada pelo objeto Bitmap deve estar na vertical, sem necessidade de rotação adicional.

  2. Obtenha uma instância do FirebaseVisionCloudLandmarkDetector :

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
        .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);
  3. Por fim, passe a imagem para o método detectInImage :

    Kotlin+KTX

    val result = detector.detectInImage(image)
        .addOnSuccessListener { firebaseVisionCloudLandmarks ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

Obtenha informações sobre os pontos de referência reconhecidos

Se a operação de reconhecimento de ponto de referência for bem-sucedida, uma lista de objetos FirebaseVisionCloudLandmark será transmitida ao listener de sucesso. Cada objeto FirebaseVisionCloudLandmark representa um ponto de referência que foi reconhecido na imagem. Para cada ponto de referência, você pode obter suas coordenadas delimitadoras na imagem de entrada, o nome do ponto de referência, sua latitude e longitude, seu ID de entidade do Knowledge Graph (se disponível) e a pontuação de confiança da correspondência. Por exemplo:

Kotlin+KTX

for (landmark in firebaseVisionCloudLandmarks) {
    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Próximos passos