Firebase ML を使用して画像内のテキストを認識する(Android)

Firebase ML を使用すると、画像内のテキストを認識できます。Firebase ML には、画像内テキスト(道路標識のテキストなど)の認識に適した汎用 API と、ドキュメント内テキストの認識に最適化された API があります。

始める前に

  1. まだ Firebase を Android プロジェクトに追加していない場合は追加します。
  2. モジュール(アプリレベル)の Gradle ファイル(通常は <project>/<app-module>/build.gradle.kts または <project>/<app-module>/build.gradle)に、Android 用 Firebase ML Vision ライブラリの依存関係を追加します。ライブラリのバージョニングの制御には、Firebase Android BoM を使用することをおすすめします。
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.7.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    Firebase Android BoM を使用すると、アプリは常に互換性のあるバージョンの Firebase Android ライブラリを使用します。

    (代替方法)BoM を使用せずに Firebase ライブラリの依存関係を追加する

    Firebase BoM を使用しない場合は、依存関係の行でそれぞれの Firebase ライブラリのバージョンを指定する必要があります。

    アプリで複数の Firebase ライブラリを使用する場合は、すべてのバージョンの互換性を確保するため、BoM を使用してライブラリのバージョンを管理することを強くおすすめします。

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    Kotlin 固有のライブラリ モジュールをお探しの場合、 2023 年 10 月(Firebase BoM 32.5.0)以降、Kotlin と Java のどちらのデベロッパーもメイン ライブラリ モジュールを利用できるようになります(詳しくは、このイニシアチブに関するよくある質問をご覧ください)。
  3. プロジェクトで Cloud ベースの API をまだ有効にしていない場合は、ここで有効にします。

    1. Firebase コンソールの Firebase ML の [APIs] ページを開きます。
    2. まだプロジェクトを Blaze 料金プランにアップグレードしていない場合は、[アップグレード] をクリックしてアップグレードします(プロジェクトをアップグレードするよう求められるのは、プロジェクトが Blaze プランでない場合のみです)。

      Blaze レベルのプロジェクトだけが Cloud ベースの API を使用できます。

    3. Cloud ベースの API がまだ有効になっていない場合は、[Cloud ベースの API を有効化] をクリックします。

これで、画像内のテキストを認識する準備ができました。

入力画像に関するガイドライン

  • Firebase ML でテキストを正確に認識するためには、入力画像に含まれているテキストが十分なピクセルデータによって表示されている必要があります。ラテン文字のテキストの場合は、各文字が少なくとも 16x16 ピクセルであるのが理想的です。中国語、日本語、韓国語のテキストでは、各文字が 24x24 ピクセルであることが望まれます。どの言語においても、一般に、文字を 24x24 ピクセルより大きくしても認識精度は向上しません。

    そのため、たとえば画像の全幅を占める名刺をスキャンする場合は、640x480 の画像が適しています。レターサイズの用紙に印刷された文書をスキャンする場合は、720x1280 ピクセルの画像が必要になることがあります。

  • 画像がぼやけていると、テキスト認識の精度が低下する可能性があります。満足のいく結果が得られない場合は、ユーザーに画像をキャプチャし直すよう求めてください。


画像内のテキストを認識する

画像内のテキストを認識するには、以下で説明するようにテキスト認識機能を実行します。

1. テキスト認識機能を実行する

画像内のテキストを認識するには、Bitmapmedia.ImageByteBuffer、バイト配列、またはデバイス上のファイルから FirebaseVisionImage オブジェクトを作成します。次に、FirebaseVisionImage オブジェクトを FirebaseVisionTextRecognizerprocessImage メソッドに渡します。

  1. 画像から FirebaseVisionImage オブジェクトを作成します。

    • FirebaseVisionImage オブジェクトを media.Image オブジェクトから作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image オブジェクトと画像の回転を FirebaseVisionImage.fromMediaImage() に渡します。

      CameraX ライブラリを使用する場合は、OnImageCapturedListener クラスと ImageAnalysis.Analyzer クラスによって回転値が計算されるので、FirebaseVisionImage.fromMediaImage() を呼び出す前に、その回転を Firebase MLROTATION_ 定数のいずれかに変換するだけで済みます。

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      画像の回転を取得するカメラ ライブラリを使用しない場合は、デバイスの回転とデバイス内のカメラセンサーの向きから計算できます。

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      次に、media.Image オブジェクトと回転値を FirebaseVisionImage.fromMediaImage() に渡します。

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • FirebaseVisionImage オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI を FirebaseVisionImage.fromFilePath() に渡します。これは、ACTION_GET_CONTENT インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • FirebaseVisionImage オブジェクトを ByteBuffer またはバイト配列から作成するには、media.Image 入力について上記のように、まず画像の回転を計算します。

      次に、画像の高さ、幅、カラー エンコード形式、回転を含む FirebaseVisionImageMetadata オブジェクトを作成します。

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      メタデータ オブジェクトと、バッファまたは配列を使用して、FirebaseVisionImage オブジェクトを作成します。

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • FirebaseVisionImage オブジェクトを Bitmap オブジェクトから作成するコードは、以下のとおりです。

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Bitmap オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。

  2. FirebaseVisionTextRecognizer のインスタンスを取得します。

    Kotlin

    val detector = FirebaseVision.getInstance().cloudTextRecognizer
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudTextRecognizerOptions.Builder()
        .setLanguageHints(listOf("en", "hi"))
        .build()

    Java

    FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudTextRecognizer();
    // Or, to change the default settings:
    //   FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance()
    //          .getCloudTextRecognizer(options);
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder()
            .setLanguageHints(Arrays.asList("en", "hi"))
            .build();
  3. 最後に、画像を processImage メソッドに渡します。

    Kotlin

    val result = detector.processImage(image)
        .addOnSuccessListener { firebaseVisionText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    Task<FirebaseVisionText> result =
            detector.processImage(image)
                    .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() {
                        @Override
                        public void onSuccess(FirebaseVisionText firebaseVisionText) {
                            // Task completed successfully
                            // ...
                        }
                    })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

2. 認識したテキストのブロックからテキストを抽出する

テキスト認識オペレーションが成功すると、FirebaseVisionText オブジェクトが成功リスナーに渡されます。FirebaseVisionText オブジェクトには、画像で認識された全テキストと、0 個以上の TextBlock オブジェクトが含まれています。

TextBlock は四角形のテキスト ブロックを表し、それぞれのブロックに 0 個以上の Line オブジェクトが含まれます。各 Line オブジェクトには 0 個以上の Element オブジェクトが含まれ、これは単語や単語に似たエンティティ(日付や数字など)を表します。

TextBlockLineElement のそれぞれのオブジェクトについて、領域内で認識されたテキストと、領域の境界座標を取得できます。

次に例を示します。

Kotlin

val resultText = result.text
for (block in result.textBlocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockLanguages = block.recognizedLanguages
    val blockCornerPoints = block.cornerPoints
    val blockFrame = block.boundingBox
    for (line in block.lines) {
        val lineText = line.text
        val lineConfidence = line.confidence
        val lineLanguages = line.recognizedLanguages
        val lineCornerPoints = line.cornerPoints
        val lineFrame = line.boundingBox
        for (element in line.elements) {
            val elementText = element.text
            val elementConfidence = element.confidence
            val elementLanguages = element.recognizedLanguages
            val elementCornerPoints = element.cornerPoints
            val elementFrame = element.boundingBox
        }
    }
}

Java

String resultText = result.getText();
for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages();
    Point[] blockCornerPoints = block.getCornerPoints();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionText.Line line: block.getLines()) {
        String lineText = line.getText();
        Float lineConfidence = line.getConfidence();
        List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages();
        Point[] lineCornerPoints = line.getCornerPoints();
        Rect lineFrame = line.getBoundingBox();
        for (FirebaseVisionText.Element element: line.getElements()) {
            String elementText = element.getText();
            Float elementConfidence = element.getConfidence();
            List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages();
            Point[] elementCornerPoints = element.getCornerPoints();
            Rect elementFrame = element.getBoundingBox();
        }
    }
}

次のステップ


ドキュメントの画像でテキストを認識する

ドキュメントのテキストを認識するには、以下の説明に従ってドキュメント テキスト認識機能を構成して実行します。

以下で説明するドキュメント テキスト認識 API には、ドキュメントの画像を処理するための便利なインターフェースがあります。ただし、FirebaseVisionTextRecognizer API によって提供されるインターフェースを使用してドキュメントをスキャンすることもできます。その場合は、高密度テキストモデルを使用するように、クラウド テキスト認識機能を構成します。

ドキュメント テキスト認識 API を使用するには:

1. テキスト認識機能を実行する

画像内のテキストを認識するには、Bitmapmedia.ImageByteBuffer、バイト配列、またはデバイス上のファイルから FirebaseVisionImage オブジェクトを作成します。次に、FirebaseVisionImage オブジェクトを FirebaseVisionDocumentTextRecognizerprocessImage メソッドに渡します。

  1. 画像から FirebaseVisionImage オブジェクトを作成します。

    • FirebaseVisionImage オブジェクトを media.Image オブジェクトから作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image オブジェクトと画像の回転を FirebaseVisionImage.fromMediaImage() に渡します。

      CameraX ライブラリを使用する場合は、OnImageCapturedListener クラスと ImageAnalysis.Analyzer クラスによって回転値が計算されるので、FirebaseVisionImage.fromMediaImage() を呼び出す前に、その回転を Firebase MLROTATION_ 定数のいずれかに変換するだけで済みます。

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Vision API
                  // ...
              }
          }
      }

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Vision API
              // ...
          }
      }

      画像の回転を取得するカメラ ライブラリを使用しない場合は、デバイスの回転とデバイス内のカメラセンサーの向きから計算できます。

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
              .getCameraCharacteristics(cameraId)
              .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      次に、media.Image オブジェクトと回転値を FirebaseVisionImage.fromMediaImage() に渡します。

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
    • FirebaseVisionImage オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI を FirebaseVisionImage.fromFilePath() に渡します。これは、ACTION_GET_CONTENT インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }
    • FirebaseVisionImage オブジェクトを ByteBuffer またはバイト配列から作成するには、media.Image 入力について上記のように、まず画像の回転を計算します。

      次に、画像の高さ、幅、カラー エンコード形式、回転を含む FirebaseVisionImageMetadata オブジェクトを作成します。

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
          .setWidth(480) // 480x360 is typically sufficient for
          .setHeight(360) // image recognition
          .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
          .setRotation(rotation)
          .build()

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      メタデータ オブジェクトと、バッファまたは配列を使用して、FirebaseVisionImage オブジェクトを作成します。

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
    • FirebaseVisionImage オブジェクトを Bitmap オブジェクトから作成するコードは、以下のとおりです。

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
      Bitmap オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。

  2. FirebaseVisionDocumentTextRecognizer のインスタンスを取得します。

    Kotlin

    val detector = FirebaseVision.getInstance()
        .cloudDocumentTextRecognizer
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder()
        .setLanguageHints(listOf("en", "hi"))
        .build()
    val detector = FirebaseVision.getInstance()
        .getCloudDocumentTextRecognizer(options)

    Java

    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer();
    // Or, to provide language hints to assist with language detection:
    // See https://cloud.google.com/vision/docs/languages for supported languages
    FirebaseVisionCloudDocumentRecognizerOptions options =
            new FirebaseVisionCloudDocumentRecognizerOptions.Builder()
                    .setLanguageHints(Arrays.asList("en", "hi"))
                    .build();
    FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance()
            .getCloudDocumentTextRecognizer(options);

  3. 最後に、画像を processImage メソッドに渡します。

    Kotlin

    detector.processImage(myImage)
        .addOnSuccessListener { firebaseVisionDocumentText ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

    Java

    detector.processImage(myImage)
            .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() {
                @Override
                public void onSuccess(FirebaseVisionDocumentText result) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

2. 認識したテキストのブロックからテキストを抽出する

テキスト認識オペレーションが成功すると、FirebaseVisionDocumentText オブジェクトが返されます。FirebaseVisionDocumentText オブジェクトには、画像で認識された全テキストと、認識されたドキュメントの構造が反映されているオブジェクトの階層が含まれます。

BlockParagraphWordSymbol のそれぞれのオブジェクトについて、領域内で認識されたテキストと、領域の境界座標を取得できます。

例:

Kotlin

val resultText = result.text
for (block in result.blocks) {
    val blockText = block.text
    val blockConfidence = block.confidence
    val blockRecognizedLanguages = block.recognizedLanguages
    val blockFrame = block.boundingBox
    for (paragraph in block.paragraphs) {
        val paragraphText = paragraph.text
        val paragraphConfidence = paragraph.confidence
        val paragraphRecognizedLanguages = paragraph.recognizedLanguages
        val paragraphFrame = paragraph.boundingBox
        for (word in paragraph.words) {
            val wordText = word.text
            val wordConfidence = word.confidence
            val wordRecognizedLanguages = word.recognizedLanguages
            val wordFrame = word.boundingBox
            for (symbol in word.symbols) {
                val symbolText = symbol.text
                val symbolConfidence = symbol.confidence
                val symbolRecognizedLanguages = symbol.recognizedLanguages
                val symbolFrame = symbol.boundingBox
            }
        }
    }
}

Java

String resultText = result.getText();
for (FirebaseVisionDocumentText.Block block: result.getBlocks()) {
    String blockText = block.getText();
    Float blockConfidence = block.getConfidence();
    List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages();
    Rect blockFrame = block.getBoundingBox();
    for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) {
        String paragraphText = paragraph.getText();
        Float paragraphConfidence = paragraph.getConfidence();
        List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages();
        Rect paragraphFrame = paragraph.getBoundingBox();
        for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) {
            String wordText = word.getText();
            Float wordConfidence = word.getConfidence();
            List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages();
            Rect wordFrame = word.getBoundingBox();
            for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) {
                String symbolText = symbol.getText();
                Float symbolConfidence = symbol.getConfidence();
                List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages();
                Rect symbolFrame = symbol.getBoundingBox();
            }
        }
    }
}

次のステップ