برای فراخوانی Google Cloud API از برنامه خود، باید یک REST API میانی ایجاد کنید که مجوزها را کنترل می کند و از مقادیر مخفی مانند کلیدهای API محافظت می کند. سپس برای احراز هویت و برقراری ارتباط با این سرویس میانی، باید کدی را در اپلیکیشن موبایل خود بنویسید.
یکی از راههای ایجاد این API REST استفاده از احراز هویت و توابع Firebase است که یک دروازه مدیریتشده و بدون سرور به APIهای Google Cloud ارائه میکند که احراز هویت را مدیریت میکند و میتواند از برنامه تلفن همراه شما با SDKهای از پیش ساخته شده فراخوانی شود.
این راهنما نشان می دهد که چگونه از این تکنیک برای فراخوانی Cloud Vision API از برنامه خود استفاده کنید. این روش به همه کاربران احراز هویت شده اجازه میدهد از طریق پروژه Cloud شما به خدمات صورتحساب Cloud Vision دسترسی داشته باشند، بنابراین قبل از ادامه، بررسی کنید که آیا این مکانیسم تأیید برای مورد استفاده شما کافی است یا خیر.
قبل از شروع
پروژه خود را پیکربندی کنید
- اگر قبلاً این کار را نکردهاید، Firebase را به پروژه Android خود اضافه کنید .
اگر قبلاً API های مبتنی بر Cloud را برای پروژه خود فعال نکرده اید، اکنون این کار را انجام دهید:
- صفحه Firebase ML APIs کنسول Firebase را باز کنید.
اگر قبلاً پروژه خود را به طرح قیمت گذاری Blaze ارتقا نداده اید، برای انجام این کار روی Upgrade کلیک کنید. (فقط اگر پروژه شما در طرح Blaze نباشد، از شما خواسته می شود که ارتقا دهید.)
فقط پروژه های سطح Blaze می توانند از API های مبتنی بر ابر استفاده کنند.
- اگر APIهای مبتنی بر Cloud قبلاً فعال نشدهاند، روی Enable Cloud-based APIs کلیک کنید.
- کلیدهای Firebase API موجود خود را برای جلوگیری از دسترسی به Cloud Vision API پیکربندی کنید:
- صفحه Credentials کنسول Cloud را باز کنید.
- برای هر کلید API در لیست، نمای ویرایش را باز کنید و در قسمت Key Restrictions، همه API های موجود به جز Cloud Vision API را به لیست اضافه کنید.
تابع فراخوانی را اجرا کنید
در مرحله بعد، Cloud Function را که برای پل زدن برنامه خود و Cloud Vision API استفاده خواهید کرد، مستقر کنید. مخزن functions-samples
حاوی مثالی است که می توانید از آن استفاده کنید.
بهطور پیشفرض، دسترسی به Cloud Vision API از طریق این عملکرد، فقط به کاربران تأیید شده برنامه شما اجازه دسترسی به Cloud Vision API را میدهد. شما می توانید عملکرد را برای نیازهای مختلف تغییر دهید.
برای استقرار تابع:
- مخزن functions-samples را کلون یا دانلود کنید و به دایرکتوری
Node-1st-gen/vision-annotate-image
تغییر دهید:git clone https://github.com/firebase/functions-samples
cd Node-1st-gen/vision-annotate-image
- نصب وابستگی ها:
cd functions
npm install
cd ..
- اگر Firebase CLI را ندارید، آن را نصب کنید .
- یک پروژه Firebase را در دایرکتوری
vision-annotate-image
راه اندازی کنید. وقتی از شما خواسته شد، پروژه خود را در لیست انتخاب کنید.firebase init
- استقرار تابع:
firebase deploy --only functions:annotateImage
Firebase Auth را به برنامه خود اضافه کنید
تابع قابل فراخوانی که در بالا مستقر شده است، هر درخواستی را که از سوی کاربران احراز هویت نشده برنامه شما انجام شود رد می کند. اگر قبلاً این کار را نکردهاید، باید Firebase Auth را به برنامه خود اضافه کنید.
وابستگی های لازم را به برنامه خود اضافه کنید
<project>/<app-module>/build.gradle.kts
یا <project>/<app-module>/build.gradle
): implementation("com.google.firebase:firebase-functions:21.0.0") implementation("com.google.code.gson:gson:2.8.6")
اکنون شما آماده شروع به تشخیص متن در تصاویر هستید.
1. تصویر ورودی را آماده کنید
برای فراخوانی Cloud Vision، تصویر باید به عنوان یک رشته کدگذاری شده با base64 فرمت شود. برای پردازش یک تصویر از یک فایل URI ذخیره شده:- تصویر را به عنوان یک شی
Bitmap
دریافت کنید:Kotlin+KTX
var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
Java
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
- در صورت تمایل، تصویر را کوچک کنید تا در پهنای باند صرفه جویی شود. اندازه های توصیه شده تصویر Cloud Vision را ببینید.
Kotlin+KTX
private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap { val originalWidth = bitmap.width val originalHeight = bitmap.height var resizedWidth = maxDimension var resizedHeight = maxDimension if (originalHeight > originalWidth) { resizedHeight = maxDimension resizedWidth = (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt() } else if (originalWidth > originalHeight) { resizedWidth = maxDimension resizedHeight = (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt() } else if (originalHeight == originalWidth) { resizedHeight = maxDimension resizedWidth = maxDimension } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false) }
Java
private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) { int originalWidth = bitmap.getWidth(); int originalHeight = bitmap.getHeight(); int resizedWidth = maxDimension; int resizedHeight = maxDimension; if (originalHeight > originalWidth) { resizedHeight = maxDimension; resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight); } else if (originalWidth > originalHeight) { resizedWidth = maxDimension; resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth); } else if (originalHeight == originalWidth) { resizedHeight = maxDimension; resizedWidth = maxDimension; } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false); }
Kotlin+KTX
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640)
Java
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640);
- شی بیت مپ را به رشته کدگذاری شده base64 تبدیل کنید:
Kotlin+KTX
// Convert bitmap to base64 encoded string val byteArrayOutputStream = ByteArrayOutputStream() bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream) val imageBytes: ByteArray = byteArrayOutputStream.toByteArray() val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
Java
// Convert bitmap to base64 encoded string ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream); byte[] imageBytes = byteArrayOutputStream.toByteArray(); String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
تصویر نمایش داده شده توسط شی
Bitmap
باید عمودی باشد، بدون نیاز به چرخش اضافی. 2. برای تشخیص متن، تابع قابل فراخوانی را فراخوانی کنید
برای تشخیص متن در یک تصویر، با ارسال یک درخواست JSON Cloud Vision ، تابع قابل فراخوانی را فراخوانی کنید.
ابتدا یک نمونه از توابع ابری را مقداردهی اولیه کنید:
Kotlin+KTX
private lateinit var functions: FirebaseFunctions // ... functions = Firebase.functions
Java
private FirebaseFunctions mFunctions; // ... mFunctions = FirebaseFunctions.getInstance();
یک روش برای فراخوانی تابع تعریف کنید:
Kotlin+KTX
private fun annotateImage(requestJson: String): Task<JsonElement> { return functions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith { task -> // This continuation runs on either success or failure, but if the task // has failed then result will throw an Exception which will be // propagated down. val result = task.result?.data JsonParser.parseString(Gson().toJson(result)) } }
Java
private Task<JsonElement> annotateImage(String requestJson) { return mFunctions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith(new Continuation<HttpsCallableResult, JsonElement>() { @Override public JsonElement then(@NonNull Task<HttpsCallableResult> task) { // This continuation runs on either success or failure, but if the task // has failed then getResult() will throw an Exception which will be // propagated down. return JsonParser.parseString(new Gson().toJson(task.getResult().getData())); } }); }
درخواست JSON را ایجاد کنید. Cloud Vision API از دو نوع تشخیص متن پشتیبانی میکند:
TEXT_DETECTION
وDOCUMENT_TEXT_DETECTION
. برای تفاوت بین این دو مورد، به اسناد Cloud Vision OCR مراجعه کنید.Kotlin+KTX
// Create json request to cloud vision val request = JsonObject() // Add image to request val image = JsonObject() image.add("content", JsonPrimitive(base64encoded)) request.add("image", image) // Add features to the request val feature = JsonObject() feature.add("type", JsonPrimitive("TEXT_DETECTION")) // Alternatively, for DOCUMENT_TEXT_DETECTION: // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION")) val features = JsonArray() features.add(feature) request.add("features", features)
Java
// Create json request to cloud vision JsonObject request = new JsonObject(); // Add image to request JsonObject image = new JsonObject(); image.add("content", new JsonPrimitive(base64encoded)); request.add("image", image); //Add features to the request JsonObject feature = new JsonObject(); feature.add("type", new JsonPrimitive("TEXT_DETECTION")); // Alternatively, for DOCUMENT_TEXT_DETECTION: //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION")); JsonArray features = new JsonArray(); features.add(feature); request.add("features", features);
در صورت تمایل، نکات زبانی را برای کمک به تشخیص زبان ارائه دهید (به زبان های پشتیبانی شده مراجعه کنید):
Kotlin+KTX
val imageContext = JsonObject() val languageHints = JsonArray() languageHints.add("en") imageContext.add("languageHints", languageHints) request.add("imageContext", imageContext)
Java
JsonObject imageContext = new JsonObject(); JsonArray languageHints = new JsonArray(); languageHints.add("en"); imageContext.add("languageHints", languageHints); request.add("imageContext", imageContext);
در نهایت تابع را فراخوانی کنید:
Kotlin+KTX
annotateImage(request.toString()) .addOnCompleteListener { task -> if (!task.isSuccessful) { // Task failed with an exception // ... } else { // Task completed successfully // ... } }
Java
annotateImage(request.toString()) .addOnCompleteListener(new OnCompleteListener<JsonElement>() { @Override public void onComplete(@NonNull Task<JsonElement> task) { if (!task.isSuccessful()) { // Task failed with an exception // ... } else { // Task completed successfully // ... } } });
3. متن را از بلوک های متن شناخته شده استخراج کنید
اگر عملیات تشخیص متن با موفقیت انجام شود، یک پاسخ JSON از BatchAnnotateImagesResponse در نتیجه کار برگردانده می شود. حاشیه نویسی های متن را می توان در شیfullTextAnnotation
یافت. می توانید متن شناسایی شده را به عنوان یک رشته در قسمت text
دریافت کنید. به عنوان مثال:
Kotlin+KTX
val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
System.out.format("%nComplete annotation:")
System.out.format("%n%s", annotation["text"].asString)
Java
JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
System.out.format("%nComplete annotation:%n");
System.out.format("%s%n", annotation.get("text").getAsString());
همچنین می توانید اطلاعات مربوط به مناطق تصویر را دریافت کنید. برای هر block
، paragraph
، word
و symbol
، می توانید متن را در منطقه و مختصات مرزی منطقه تشخیص دهید. به عنوان مثال:
Kotlin+KTX
for (page in annotation["pages"].asJsonArray) {
var pageText = ""
for (block in page.asJsonObject["blocks"].asJsonArray) {
var blockText = ""
for (para in block.asJsonObject["paragraphs"].asJsonArray) {
var paraText = ""
for (word in para.asJsonObject["words"].asJsonArray) {
var wordText = ""
for (symbol in word.asJsonObject["symbols"].asJsonArray) {
wordText += symbol.asJsonObject["text"].asString
System.out.format(
"Symbol text: %s (confidence: %f)%n",
symbol.asJsonObject["text"].asString,
symbol.asJsonObject["confidence"].asFloat,
)
}
System.out.format(
"Word text: %s (confidence: %f)%n%n",
wordText,
word.asJsonObject["confidence"].asFloat,
)
System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
paraText = String.format("%s%s ", paraText, wordText)
}
System.out.format("%nParagraph: %n%s%n", paraText)
System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
blockText += paraText
}
pageText += blockText
}
}
Java
for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
StringBuilder pageText = new StringBuilder();
for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
StringBuilder blockText = new StringBuilder();
for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
StringBuilder paraText = new StringBuilder();
for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
StringBuilder wordText = new StringBuilder();
for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
wordText.append(symbol.getAsJsonObject().get("text").getAsString());
System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
}
System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
paraText.append(wordText.toString()).append(" ");
}
System.out.format("%nParagraph:%n%s%n", paraText);
System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
blockText.append(paraText);
}
pageText.append(blockText);
}
}