Catch up on everything announced at Firebase Summit, and learn how Firebase can help you accelerate app development and run your app with confidence. Learn More

Reconnaître le texte dans les images en toute sécurité avec Cloud Vision à l'aide de Firebase Auth et Functions sur Android

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Pour appeler une API Google Cloud depuis votre application, vous devez créer une API REST intermédiaire qui gère l'autorisation et protège les valeurs secrètes telles que les clés API. Vous devez ensuite écrire du code dans votre application mobile pour vous authentifier et communiquer avec ce service intermédiaire.

Une façon de créer cette API REST consiste à utiliser Firebase Authentication and Functions, qui vous offre une passerelle gérée et sans serveur vers les API Google Cloud qui gère l'authentification et peut être appelée depuis votre application mobile avec des SDK prédéfinis.

Ce guide explique comment utiliser cette technique pour appeler l'API Cloud Vision à partir de votre application. Cette méthode permettra à tous les utilisateurs authentifiés d'accéder aux services facturés de Cloud Vision via votre projet Cloud. Vérifiez donc si ce mécanisme d'authentification est suffisant pour votre cas d'utilisation avant de continuer.

Avant que tu commences

Configurez votre projet

  1. Si vous ne l'avez pas déjà fait, ajoutez Firebase à votre projet Android .
  2. Si vous n'avez pas encore activé les API basées sur le cloud pour votre projet, faites-le maintenant :

    1. Ouvrez la page API Firebase ML de la console Firebase.
    2. Si vous n'avez pas encore mis à niveau votre projet vers le plan tarifaire Blaze, cliquez sur Mettre à niveau pour le faire. (Vous serez invité à mettre à niveau uniquement si votre projet n'est pas sur le plan Blaze.)

      Seuls les projets de niveau Blaze peuvent utiliser des API basées sur le cloud.

    3. Si les API basées sur le cloud ne sont pas déjà activées, cliquez sur Activer les API basées sur le cloud .
  3. Configurez vos clés d'API Firebase existantes pour interdire l'accès à l'API Cloud Vision :
    1. Ouvrez la page Identifiants de la console Cloud.
    2. Pour chaque clé d'API de la liste, ouvrez la vue de modification et, dans la section Key Restrictions, ajoutez toutes les API disponibles à l' exception de l'API Cloud Vision à la liste.

Déployer la fonction appelable

Ensuite, déployez la fonction Cloud que vous utiliserez pour relier votre application et l'API Cloud Vision. Le référentiel functions-samples contient un exemple que vous pouvez utiliser.

Par défaut, l'accès à l'API Cloud Vision via cette fonction n'autorisera que les utilisateurs authentifiés de votre application à accéder à l'API Cloud Vision. Vous pouvez modifier la fonction pour différentes exigences.

Pour déployer la fonction :

  1. Clonez ou téléchargez le référentiel functions-samples et accédez au répertoire vision-annotate-image :
    git clone https://github.com/firebase/functions-samples
    cd vision-annotate-image
    
  2. Installer les dépendances :
    cd functions
    npm install
    cd ..
    
  3. Si vous n'avez pas la CLI Firebase, installez-la .
  4. Initialisez un projet Firebase dans le répertoire vision-annotate-image . Lorsque vous y êtes invité, sélectionnez votre projet dans la liste.
    firebase init
  5. Déployez la fonction :
    firebase deploy --only functions:annotateImage

Ajouter Firebase Auth à votre application

La fonction appelable déployée ci-dessus rejettera toute demande d'utilisateurs non authentifiés de votre application. Si vous ne l'avez pas déjà fait, vous devrez ajouter Firebase Auth à votre application.

Ajouter les dépendances nécessaires à votre application

  • Ajoutez les dépendances des bibliothèques Firebase Functions et gson Android au fichier Gradle de votre module (au niveau de l'application) (généralement app/build.gradle) :
    implementation 'com.google.firebase:firebase-functions:20.2.1'
    implementation 'com.google.code.gson:gson:2.8.6'
    
  • Vous êtes maintenant prêt à commencer à reconnaître du texte dans des images.

    1. Préparez l'image d'entrée

    Pour appeler Cloud Vision, l'image doit être au format d'une chaîne encodée en base64. Pour traiter une image à partir d'un URI de fichier enregistré :
    1. Obtenez l'image en tant qu'objet Bitmap :

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
    2. Facultativement, réduisez l'échelle de l'image pour économiser de la bande passante. Consultez les tailles d'image recommandées par Cloud Vision.

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                      (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                      (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)
    3. Convertissez l'objet bitmap en une chaîne encodée en base64 :

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
    4. L'image représentée par l'objet Bitmap doit être droite, sans rotation supplémentaire requise.

    2. Appelez la fonction appelable pour reconnaître le texte

    Pour reconnaître du texte dans une image, appelez la fonction appelable en transmettant une requête JSON Cloud Vision .

    1. Tout d'abord, initialisez une instance de Cloud Functions :

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      
    2. Définissez une méthode pour invoquer la fonction :

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith { task ->
                      // This continuation runs on either success or failure, but if the task
                      // has failed then result will throw an Exception which will be
                      // propagated down.
                      val result = task.result?.data
                      JsonParser.parseString(Gson().toJson(result))
                  }
      }
      
    3. Créez la requête JSON. L'API Cloud Vision prend en charge deux types de détection de texte : TEXT_DETECTION et DOCUMENT_TEXT_DETECTION . Consultez les documents Cloud Vision OCR pour connaître la différence entre les deux cas d'utilisation.

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("type", new JsonPrimitive("TEXT_DETECTION"));
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      //Add features to the request
      val feature = JsonObject()
      feature.add("type", JsonPrimitive("TEXT_DETECTION"))
      // Alternatively, for DOCUMENT_TEXT_DETECTION:
      // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      

      En option, fournissez des conseils de langue pour faciliter la détection de la langue (voir langues prises en charge ) :

      Java

      JsonObject imageContext = new JsonObject();
      JsonArray languageHints = new JsonArray();
      languageHints.add("en");
      imageContext.add("languageHints", languageHints);
      request.add("imageContext", imageContext);
      

      Kotlin+KTX

      val imageContext = JsonObject()
      val languageHints = JsonArray()
      languageHints.add("en")
      imageContext.add("languageHints", languageHints)
      request.add("imageContext", imageContext)
      
    4. Enfin, invoquez la fonction :

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

      Kotlin+KTX

      annotateImage(request.toString())
              .addOnCompleteListener { task ->
                  if (!task.isSuccessful) {
                      // Task failed with an exception
                      // ...
                  } else {
                      // Task completed successfully
                      // ...
                  }
              }
      

    3. Extraire du texte à partir de blocs de texte reconnu

    Si l'opération de reconnaissance de texte réussit, une réponse JSON de BatchAnnotateImagesResponse sera renvoyée dans le résultat de la tâche. Les annotations de texte se trouvent dans l'objet fullTextAnnotation .

    Vous pouvez obtenir le texte reconnu sous forme de chaîne dans le champ de text . Par exemple:

    Java

    JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
    System.out.format("%nComplete annotation:%n");
    System.out.format("%s%n", annotation.get("text").getAsString());
    

    Kotlin+KTX

    val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
    System.out.format("%nComplete annotation:")
    System.out.format("%n%s", annotation["text"].asString)
    

    Vous pouvez également obtenir des informations spécifiques aux régions de l'image. Pour chaque block , paragraph , word et symbol , vous pouvez obtenir le texte reconnu dans la région et les coordonnées de délimitation de la région. Par exemple:

    Java

    for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
        StringBuilder pageText = new StringBuilder();
        for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
            StringBuilder blockText = new StringBuilder();
            for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
                StringBuilder paraText = new StringBuilder();
                for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
                    StringBuilder wordText = new StringBuilder();
                    for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
                        wordText.append(symbol.getAsJsonObject().get("text").getAsString());
                        System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
                    }
                    System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
                    System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
                    paraText.append(wordText.toString()).append(" ");
                }
                System.out.format("%nParagraph:%n%s%n", paraText);
                System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
                System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
                blockText.append(paraText);
            }
            pageText.append(blockText);
        }
    }
    

    Kotlin+KTX

    for (page in annotation["pages"].asJsonArray) {
        var pageText = ""
        for (block in page.asJsonObject["blocks"].asJsonArray) {
            var blockText = ""
            for (para in block.asJsonObject["paragraphs"].asJsonArray) {
                var paraText = ""
                for (word in para.asJsonObject["words"].asJsonArray) {
                    var wordText = ""
                    for (symbol in word.asJsonObject["symbols"].asJsonArray) {
                        wordText += symbol.asJsonObject["text"].asString
                        System.out.format("Symbol text: %s (confidence: %f)%n",
                            symbol.asJsonObject["text"].asString, symbol.asJsonObject["confidence"].asFloat)
                    }
                    System.out.format("Word text: %s (confidence: %f)%n%n", wordText,
                        word.asJsonObject["confidence"].asFloat)
                    System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
                    paraText = String.format("%s%s ", paraText, wordText)
                }
                System.out.format("%nParagraph: %n%s%n", paraText)
                System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
                System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
                blockText += paraText
            }
            pageText += blockText
        }
    }