AutoML でトレーニングされたモデルを使用して画像内のオブジェクトを検出する(Apple プラットフォーム)

AutoML Vision Edge を使用して独自のモデルをトレーニングした後、そのモデルをアプリで使用して画像内のオブジェクトを検出することができます。

AutoML Vision Edge からトレーニングされたモデルを統合するには、モデルのファイルを Xcode プロジェクトにコピーしてバンドルする方法と、Firebase から動的にダウンロードする方法があります。

モデルのバンドル オプション
アプリにバンドル済み
  • モデルがバンドルの一部
  • このモデルは、Apple デバイスがオフラインのときでもすぐに利用できます。
  • Firebase プロジェクトは不要
Firebase でホストする
  • モデルを Firebase Machine Learning にアップロードしてホストする
  • アプリバンドルのサイズを小さくする
  • モデルがオンデマンドでダウンロードされる
  • アプリを再公開することなくモデルの更新を push できる
  • Firebase Remote Config による簡単な A/B テスト
  • Firebase プロジェクトが必要

始める前に

  1. モデルをダウンロードするには、Firebase を Apple プロジェクトに追加してください(まだ行っていない場合)。これは、モデルをバンドルする際には必要ありません。

  2. Podfile に TensorFlow ライブラリと Firebase ライブラリを含めます。

    モデルをアプリにバンドルする場合:

    Swift

    pod 'TensorFlowLiteSwift'
    

    Objective-C

    pod 'TensorFlowLiteObjC'
    

    Firebase からモデルを動的にダウンロードする場合は、Firebase/MLModelInterpreter 依存関係を追加します。

    Swift

    pod 'TensorFlowLiteSwift'
    pod 'Firebase/MLModelInterpreter'
    

    Objective-C

    pod 'TensorFlowLiteObjC'
    pod 'Firebase/MLModelInterpreter'
    
  3. プロジェクトの Pod をインストールまたは更新した後に、.xcworkspace を使用して Xcode プロジェクトを開きます。

1. モデルを読み込む

ローカル モデルソースを構成する

モデルをアプリにバンドルするには、モデルとラベルファイルを Xcode プロジェクトにコピーします。その際、[Create folder references] を選択するように注意してください。モデルファイルとラベルはアプリバンドルに含まれます。

また、モデルと一緒に作成された tflite_metadata.json ファイルも確認します。次の 2 つの値が必要です。

  • モデルの入力ディメンション。これのデフォルトは 320x320 です。
  • モデルの最大検出数。これのデフォルトは 40 です。

Firebase によってホストされるモデルソースを構成する

リモートでホストされるモデルを使用するには、CustomRemoteModel オブジェクトを作成します。その際に、モデルを公開したときに割り当てた名前を指定します。

Swift

let remoteModel = CustomRemoteModel(
    name: "your_remote_model"  // The name you assigned in the Google Cloud Console.
)

Objective-C

FIRCustomRemoteModel *remoteModel = [[FIRCustomRemoteModel alloc]
                                     initWithName:@"your_remote_model"];

次に、ダウンロードを許可する条件を指定してモデルのダウンロード タスクを開始します。モデルがデバイスにない場合、または新しいバージョンのモデルが使用可能な場合、このタスクは Firebase から非同期でモデルをダウンロードします。

Swift

let downloadProgress = ModelManager.modelManager().download(
    remoteModel,
    conditions: ModelDownloadConditions(
        allowsCellularAccess: true,
        allowsBackgroundDownloading: true
    )
)

Objective-C

FIRModelDownloadConditions *conditions =
        [[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
                                             allowsBackgroundDownloading:YES];
NSProgress *progress = [[FIRModelManager modelManager] downloadModel:remoteModel
                                                          conditions:conditions];

多くのアプリは、初期化コードでモデルのダウンロード タスクを開始しますが、モデルを使用する前に開始することもできます。

モデルからオブジェクト検出器を作成する

モデルソースを構成した後、そのソースのいずれか 1 つから TensorFlow Lite の Interpreter オブジェクトを作成します。

ローカル バンドル モデルのみを使用する場合は、モデルファイルからインタープリタを作成するだけで済みます。

Swift

guard let modelPath = Bundle.main.path(
    forResource: "model",
    ofType: "tflite"
) else {
  print("Failed to load the model file.")
  return true
}
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()

Objective-C

NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                      ofType:@"tflite"];

NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
                                                                  error:&error];
if (error != NULL) { return; }

[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }

リモートでホストされるモデルがある場合は、そのモデルを実行する前にダウンロード済みであることを確認する必要があります。モデルのダウンロード タスクのステータスは、モデル マネージャーの isModelDownloaded(remoteModel:) メソッドを使用して確認できます。

ダウンロードのステータスの確認はインタープリタを実行する前に行いますが、リモートでホストされるモデルとローカル バンドル モデルの両方を使用する場合は、Interpreter をインスタンス化するときにこの確認を行うという選択肢があります。この方法では、リモートモデルがダウンロードされている場合はリモートモデルからインタープリタを作成し、リモートモデルがダウンロードされていない場合はローカルモデルからインタープリタを作成するということが可能です。

Swift

var modelPath: String?
if ModelManager.modelManager().isModelDownloaded(remoteModel) {
    ModelManager.modelManager().getLatestModelFilePath(remoteModel) { path, error in
        guard error == nil else { return }
        guard let path = path else { return }
        modelPath = path
    }
} else {
    modelPath = Bundle.main.path(
        forResource: "model",
        ofType: "tflite"
    )
}

guard modelPath != nil else { return }
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()

Objective-C

__block NSString *modelPath;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
    [[FIRModelManager modelManager] getLatestModelFilePath:remoteModel
                                                completion:^(NSString * _Nullable filePath,
                                                             NSError * _Nullable error) {
        if (error != NULL) { return; }
        if (filePath == NULL) { return; }
        modelPath = filePath;
    }];
} else {
    modelPath = [[NSBundle mainBundle] pathForResource:@"model"
                                                ofType:@"tflite"];
}

NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
                                                                  error:&error];
if (error != NULL) { return; }

[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }

リモートでホストされるモデルのみがある場合は、モデルがダウンロード済みであることを確認するまで、モデルに関連する機能(UI の一部をグレー表示または非表示にするなど)を無効にする必要があります。

オブザーバをデフォルトの通知センターに接続して、モデルのダウンロード ステータスを取得できます。ダウンロードに時間がかかり、ダウンロードが終了するまでに元のオブジェクトが解放される可能性があります。このため、observer ブロックでは self への弱い参照を使用してください。例:

Swift

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidSucceed,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel,
        model.name == "your_remote_model"
        else { return }
    // The model was downloaded and is available on the device
}

NotificationCenter.default.addObserver(
    forName: .firebaseMLModelDownloadDidFail,
    object: nil,
    queue: nil
) { [weak self] notification in
    guard let strongSelf = self,
        let userInfo = notification.userInfo,
        let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
            as? RemoteModel
        else { return }
    let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
    // ...
}

Objective-C

__weak typeof(self) weakSelf = self;

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidSucceedNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
              if ([model.name isEqualToString:@"your_remote_model"]) {
                // The model was downloaded and is available on the device
              }
            }];

[NSNotificationCenter.defaultCenter
    addObserverForName:FIRModelDownloadDidFailNotification
                object:nil
                 queue:nil
            usingBlock:^(NSNotification *_Nonnull note) {
              if (weakSelf == nil | note.userInfo == nil) {
                return;
              }
              __strong typeof(self) strongSelf = weakSelf;

              NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
            }];

2. 入力画像を準備する

次に、TensorFlow Lite インタープリタ用に画像を準備する必要があります。

  1. モデルの入力ディメンションに合うよう画像の切り抜きと拡大縮小を行います。入力ディメンションは tflite_metadata.json ファイルで指定します(デフォルトは 320x320 ピクセル)。画像の調整を行うには、Core Image またはサードパーティのライブラリを使用します。

  2. 画像データを DataNSData オブジェクト)にコピーします。

    Swift

    guard let image: CGImage = // Your input image
    guard let context = CGContext(
      data: nil,
      width: image.width, height: image.height,
      bitsPerComponent: 8, bytesPerRow: image.width * 4,
      space: CGColorSpaceCreateDeviceRGB(),
      bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue
    ) else {
      return nil
    }
    
    context.draw(image, in: CGRect(x: 0, y: 0, width: image.width, height: image.height))
    guard let imageData = context.data else { return nil }
    
    var inputData = Data()
    for row in 0 ..< 320 {    // Model takes 320x320 pixel images as input
      for col in 0 ..< 320 {
        let offset = 4 * (col * context.width + row)
        // (Ignore offset 0, the unused alpha channel)
        var red = imageData.load(fromByteOffset: offset+1, as: UInt8.self)
        var green = imageData.load(fromByteOffset: offset+2, as: UInt8.self)
        var blue = imageData.load(fromByteOffset: offset+3, as: UInt8.self)
    
        inputData.append(&red, count: 1)
        inputData.append(&green, count: 1)
        inputData.append(&blue, count: 1)
      }
    }
    

    Objective-C

    CGImageRef image = // Your input image
    long imageWidth = CGImageGetWidth(image);
    long imageHeight = CGImageGetHeight(image);
    CGContextRef context = CGBitmapContextCreate(nil,
                                                 imageWidth, imageHeight,
                                                 8,
                                                 imageWidth * 4,
                                                 CGColorSpaceCreateDeviceRGB(),
                                                 kCGImageAlphaNoneSkipFirst);
    CGContextDrawImage(context, CGRectMake(0, 0, imageWidth, imageHeight), image);
    UInt8 *imageData = CGBitmapContextGetData(context);
    
    NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0];
    
    for (int row = 0; row < 300; row++) {
      for (int col = 0; col < 300; col++) {
        long offset = 4 * (row * imageWidth + col);
        // (Ignore offset 0, the unused alpha channel)
        UInt8 red = imageData[offset+1];
        UInt8 green = imageData[offset+2];
        UInt8 blue = imageData[offset+3];
    
        [inputData appendBytes:&red length:1];
        [inputData appendBytes:&green length:1];
        [inputData appendBytes:&blue length:1];
      }
    }
    

3. オブジェクト検出器を実行する

次に、準備した入力データをインタープリタに渡します。

Swift

try interpreter.copy(inputData, toInputAt: 0)
try interpreter.invoke()

Objective-C

TFLTensor *input = [interpreter inputTensorAtIndex:0 error:&error];
if (error != nil) { return; }

[input copyData:inputData error:&error];
if (error != nil) { return; }

[interpreter invokeWithError:&error];
if (error != nil) { return; }

4. 検出されたオブジェクトに関する情報を取得する

オブジェクト検出が成功すると、モデルはそれぞれ 40 個の要素(または tflite_metadata.json ファイル内で指定された要素数)からなる 3 つの配列を出力として生成します。各要素は 1 つの候補オブジェクトに対応しています。最初の配列は境界ボックスの配列、2 つ目はラベルの配列、3 つ目は信頼値の配列です。モデルの出力を取得するには:

Swift

var output = try interpreter.output(at: 0)
let boundingBoxes =
    UnsafeMutableBufferPointer<Float32>.allocate(capacity: 4 * 40)
output.data.copyBytes(to: boundingBoxes)

output = try interpreter.output(at: 1)
let labels =
    UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: labels)

output = try interpreter.output(at: 2)
let probabilities =
    UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: probabilities)

Objective-C

TFLTensor *output = [interpreter outputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
NSData *boundingBoxes = [output dataWithError:&error];
if (error != nil) { return; }

output = [interpreter outputTensorAtIndex:1 error:&error];
if (error != nil) { return; }
NSData *labels = [output dataWithError:&error];
if (error != nil) { return; }

output = [interpreter outputTensorAtIndex:2 error:&error];
if (error != nil) { return; }
NSData *probabilities = [output dataWithError:&error];
if (error != nil) { return; }

続いて、ラベルの出力とラベル辞書を組み合わせることができます。

Swift

guard let labelPath = Bundle.main.path(
    forResource: "dict",
    ofType: "txt"
) else { return true }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labelText = fileContents?.components(separatedBy: "\n") else { return true }

for i in 0 ..< 40 {
    let top = boundingBoxes[0 * i]
    let left = boundingBoxes[1 * i]
    let bottom = boundingBoxes[2 * i]
    let right = boundingBoxes[3 * i]

    let labelIdx = Int(labels[i])
    let label = labelText[labelIdx]
    let confidence = probabilities[i]

    if confidence > 0.66 {
        print("Object found: \(label) (confidence: \(confidence))")
        print("  Top-left: (\(left),\(top))")
        print("  Bottom-right: (\(right),\(bottom))")
    }
}

Objective-C

NSString *labelPath = [NSBundle.mainBundle pathForResource:@"dict"
                                                    ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
                                                   encoding:NSUTF8StringEncoding
                                                      error:&error];
if (error != nil || fileContents == NULL) { return; }
NSArray<NSString*> *labelText = [fileContents componentsSeparatedByString:@"\n"];

for (int i = 0; i < 40; i++) {
    Float32 top, right, bottom, left;
    Float32 labelIdx;
    Float32 confidence;

    [boundingBoxes getBytes:&top range:NSMakeRange(16 * i + 0, 4)];
    [boundingBoxes getBytes:&left range:NSMakeRange(16 * i + 4, 4)];
    [boundingBoxes getBytes:&bottom range:NSMakeRange(16 * i + 8, 4)];
    [boundingBoxes getBytes:&right range:NSMakeRange(16 * i + 12, 4)];

    [labels getBytes:&labelIdx range:NSMakeRange(4 * i, 4)];
    [probabilities getBytes:&confidence range:NSMakeRange(4 * i, 4)];

    if (confidence > 0.5f) {
        NSString *label = labelText[(int)labelIdx];
        NSLog(@"Object detected: %@", label);
        NSLog(@"  Confidence: %f", confidence);
        NSLog(@"  Top-left: (%f,%f)", left, top);
        NSLog(@"  Bottom-right: (%f,%f)", right, bottom);
    }
}

リアルタイムのパフォーマンスを改善するためのヒント

リアルタイムのアプリケーションで画像にラベルを付ける場合は、適切なフレームレートを得るために次のガイドラインに従ってください。

  • 検出器の呼び出しのスロットル調整を行います。検出器の実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。
  • 検出器の出力を使用して入力画像の上にグラフィックスをオーバーレイする場合は、まず検出結果を取得し、画像とオーバーレイを 1 つのステップでレンダリングします。これにより、ディスプレイ サーフェスへのレンダリングは入力フレームごとに 1 回で済みます。例については、ショーケース サンプルアプリの previewOverlayView クラスと FIRDetectionOverlayView クラスをご覧ください。